xvector-voxceleb1 / features.py
yangwang825's picture
Upload XVectorForSequenceClassification
99269d6 verified
raw
history blame
23.7 kB
import math
import random
from typing import Optional, Union, Tuple
import librosa
import torchaudio
import torch
import torch.nn as nn
try:
import torchaudio
HAVE_TORCHAUDIO = True
except ModuleNotFoundError:
HAVE_TORCHAUDIO = False
CONSTANT = 1e-5
def normalize_batch(x, seq_len, normalize_type):
x_mean = None
x_std = None
if normalize_type == "per_feature":
batch_size = x.shape[0]
max_time = x.shape[2]
# When doing stream capture to a graph, item() is not allowed
# becuase it calls cudaStreamSynchronize(). Therefore, we are
# sacrificing some error checking when running with cuda graphs.
if (
torch.cuda.is_available()
and not torch.cuda.is_current_stream_capturing()
and torch.any(seq_len == 1).item()
):
raise ValueError(
"normalize_batch with `per_feature` normalize_type received a tensor of length 1. This will result "
"in torch.std() returning nan. Make sure your audio length has enough samples for a single "
"feature (ex. at least `hop_length` for Mel Spectrograms)."
)
time_steps = torch.arange(max_time, device=x.device).unsqueeze(0).expand(batch_size, max_time)
valid_mask = time_steps < seq_len.unsqueeze(1)
x_mean_numerator = torch.where(valid_mask.unsqueeze(1), x, 0.0).sum(axis=2)
x_mean_denominator = valid_mask.sum(axis=1)
x_mean = x_mean_numerator / x_mean_denominator.unsqueeze(1)
# Subtract 1 in the denominator to correct for the bias.
x_std = torch.sqrt(
torch.sum(torch.where(valid_mask.unsqueeze(1), x - x_mean.unsqueeze(2), 0.0) ** 2, axis=2)
/ (x_mean_denominator.unsqueeze(1) - 1.0)
)
# make sure x_std is not zero
x_std += CONSTANT
return (x - x_mean.unsqueeze(2)) / x_std.unsqueeze(2), x_mean, x_std
elif normalize_type == "all_features":
x_mean = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device)
x_std = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device)
for i in range(x.shape[0]):
x_mean[i] = x[i, :, : seq_len[i].item()].mean()
x_std[i] = x[i, :, : seq_len[i].item()].std()
# make sure x_std is not zero
x_std += CONSTANT
return (x - x_mean.view(-1, 1, 1)) / x_std.view(-1, 1, 1), x_mean, x_std
elif "fixed_mean" in normalize_type and "fixed_std" in normalize_type:
x_mean = torch.tensor(normalize_type["fixed_mean"], device=x.device)
x_std = torch.tensor(normalize_type["fixed_std"], device=x.device)
return (
(x - x_mean.view(x.shape[0], x.shape[1]).unsqueeze(2)) / x_std.view(x.shape[0], x.shape[1]).unsqueeze(2),
x_mean,
x_std,
)
else:
return x, x_mean, x_std
def clean_spectrogram_batch(spectrogram: torch.Tensor, spectrogram_len: torch.Tensor, fill_value=0.0) -> torch.Tensor:
"""
Fill spectrogram values outside the length with `fill_value`
Args:
spectrogram: Tensor with shape [B, C, L] containing batched spectrograms
spectrogram_len: Tensor with shape [B] containing the sequence length of each batch element
fill_value: value to fill with, 0.0 by default
Returns:
cleaned spectrogram, tensor with shape equal to `spectrogram`
"""
device = spectrogram.device
batch_size, _, max_len = spectrogram.shape
mask = torch.arange(max_len, device=device)[None, :] >= spectrogram_len[:, None]
mask = mask.unsqueeze(1).expand_as(spectrogram)
return spectrogram.masked_fill(mask, fill_value)
def splice_frames(x, frame_splicing):
"""Stacks frames together across feature dim
input is batch_size, feature_dim, num_frames
output is batch_size, feature_dim*frame_splicing, num_frames
"""
seq = [x]
for n in range(1, frame_splicing):
seq.append(torch.cat([x[:, :, :n], x[:, :, n:]], dim=2))
return torch.cat(seq, dim=1)
@torch.jit.script_if_tracing
def make_seq_mask_like(
lengths: torch.Tensor, like: torch.Tensor, time_dim: int = -1, valid_ones: bool = True
) -> torch.Tensor:
"""
Args:
lengths: Tensor with shape [B] containing the sequence length of each batch element
like: The mask will contain the same number of dimensions as this Tensor, and will have the same max
length in the time dimension of this Tensor.
time_dim: Time dimension of the `shape_tensor` and the resulting mask. Zero-based.
valid_ones: If True, valid tokens will contain value `1` and padding will be `0`. Else, invert.
Returns:
A :class:`torch.Tensor` containing 1's and 0's for valid and invalid tokens, respectively, if `valid_ones`, else
vice-versa. Mask will have the same number of dimensions as `like`. Batch and time dimensions will match
the `like`. All other dimensions will be singletons. E.g., if `like.shape == [3, 4, 5]` and
`time_dim == -1', mask will have shape `[3, 1, 5]`.
"""
# Mask with shape [B, T]
mask = torch.arange(like.shape[time_dim], device=like.device).repeat(lengths.shape[0], 1).lt(lengths.view(-1, 1))
# [B, T] -> [B, *, T] where * is any number of singleton dimensions to expand to like tensor
for _ in range(like.dim() - mask.dim()):
mask = mask.unsqueeze(1)
# If needed, transpose time dim
if time_dim != -1 and time_dim != mask.dim() - 1:
mask = mask.transpose(-1, time_dim)
# Maybe invert the padded vs. valid token values
if not valid_ones:
mask = ~mask
return mask
class FilterbankFeatures(nn.Module):
"""Featurizer that converts wavs to Mel Spectrograms.
See AudioToMelSpectrogramPreprocessor for args.
"""
def __init__(
self,
sample_rate=16000,
n_window_size=320,
n_window_stride=160,
window="hann",
normalize="per_feature",
n_fft=None,
preemph=0.97,
nfilt=64,
lowfreq=0,
highfreq=None,
log=True,
log_zero_guard_type="add",
log_zero_guard_value=2**-24,
dither=CONSTANT,
pad_to=16,
max_duration=16.7,
frame_splicing=1,
exact_pad=False,
pad_value=0,
mag_power=2.0,
use_grads=False,
rng=None,
nb_augmentation_prob=0.0,
nb_max_freq=4000,
mel_norm="slaney",
stft_exact_pad=False, # Deprecated arguments; kept for config compatibility
stft_conv=False, # Deprecated arguments; kept for config compatibility
):
super().__init__()
if stft_conv or stft_exact_pad:
print(
"Using torch_stft is deprecated and has been removed. The values have been forcibly set to False "
"for FilterbankFeatures and AudioToMelSpectrogramPreprocessor. Please set exact_pad to True "
"as needed."
)
if exact_pad and n_window_stride % 2 == 1:
raise NotImplementedError(
f"{self} received exact_pad == True, but hop_size was odd. If audio_length % hop_size == 0. Then the "
"returned spectrogram would not be of length audio_length // hop_size. Please use an even hop_size."
)
self.log_zero_guard_value = log_zero_guard_value
if (
n_window_size is None
or n_window_stride is None
or not isinstance(n_window_size, int)
or not isinstance(n_window_stride, int)
or n_window_size <= 0
or n_window_stride <= 0
):
raise ValueError(
f"{self} got an invalid value for either n_window_size or "
f"n_window_stride. Both must be positive ints."
)
self.win_length = n_window_size
self.hop_length = n_window_stride
self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length))
self.stft_pad_amount = (self.n_fft - self.hop_length) // 2 if exact_pad else None
self.exact_pad = exact_pad
if exact_pad:
print("STFT using exact pad")
torch_windows = {
'hann': torch.hann_window,
'hamming': torch.hamming_window,
'blackman': torch.blackman_window,
'bartlett': torch.bartlett_window,
'none': None,
}
window_fn = torch_windows.get(window, None)
window_tensor = window_fn(self.win_length, periodic=False) if window_fn else None
self.register_buffer("window", window_tensor)
self.normalize = normalize
self.log = log
self.dither = dither
self.frame_splicing = frame_splicing
self.nfilt = nfilt
self.preemph = preemph
self.pad_to = pad_to
highfreq = highfreq or sample_rate / 2
filterbanks = torch.tensor(
librosa.filters.mel(
sr=sample_rate, n_fft=self.n_fft, n_mels=nfilt, fmin=lowfreq, fmax=highfreq, norm=mel_norm
),
dtype=torch.float,
).unsqueeze(0)
self.register_buffer("fb", filterbanks)
# Calculate maximum sequence length
max_length = self.get_seq_len(torch.tensor(max_duration * sample_rate, dtype=torch.float))
max_pad = pad_to - (max_length % pad_to) if pad_to > 0 else 0
self.max_length = max_length + max_pad
self.pad_value = pad_value
self.mag_power = mag_power
# We want to avoid taking the log of zero
# There are two options: either adding or clamping to a small value
if log_zero_guard_type not in ["add", "clamp"]:
raise ValueError(
f"{self} received {log_zero_guard_type} for the "
f"log_zero_guard_type parameter. It must be either 'add' or "
f"'clamp'."
)
self.use_grads = use_grads
if not use_grads:
self.forward = torch.no_grad()(self.forward)
self._rng = random.Random() if rng is None else rng
self.nb_augmentation_prob = nb_augmentation_prob
if self.nb_augmentation_prob > 0.0:
if nb_max_freq >= sample_rate / 2:
self.nb_augmentation_prob = 0.0
else:
self._nb_max_fft_bin = int((nb_max_freq / sample_rate) * n_fft)
# log_zero_guard_value is the the small we want to use, we support
# an actual number, or "tiny", or "eps"
self.log_zero_guard_type = log_zero_guard_type
def stft(self, x):
return torch.stft(
x,
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
center=False if self.exact_pad else True,
window=self.window.to(dtype=torch.float),
return_complex=True,
)
def log_zero_guard_value_fn(self, x):
if isinstance(self.log_zero_guard_value, str):
if self.log_zero_guard_value == "tiny":
return torch.finfo(x.dtype).tiny
elif self.log_zero_guard_value == "eps":
return torch.finfo(x.dtype).eps
else:
raise ValueError(
f"{self} received {self.log_zero_guard_value} for the "
f"log_zero_guard_type parameter. It must be either a "
f"number, 'tiny', or 'eps'"
)
else:
return self.log_zero_guard_value
def get_seq_len(self, seq_len):
# Assuming that center is True is stft_pad_amount = 0
pad_amount = self.stft_pad_amount * 2 if self.stft_pad_amount is not None else self.n_fft // 2 * 2
seq_len = torch.floor_divide((seq_len + pad_amount - self.n_fft), self.hop_length) + 1
return seq_len.to(dtype=torch.long)
@property
def filter_banks(self):
return self.fb
def forward(self, x, seq_len, linear_spec=False):
seq_len = self.get_seq_len(seq_len)
if self.stft_pad_amount is not None:
x = torch.nn.functional.pad(
x.unsqueeze(1), (self.stft_pad_amount, self.stft_pad_amount), "reflect"
).squeeze(1)
# dither (only in training mode for eval determinism)
if self.training and self.dither > 0:
x += self.dither * torch.randn_like(x)
# do preemphasis
if self.preemph is not None:
x = torch.cat((x[:, 0].unsqueeze(1), x[:, 1:] - self.preemph * x[:, :-1]), dim=1)
# disable autocast to get full range of stft values
with torch.amp.autocast(x.device.type, enabled=False):
x = self.stft(x)
# torch stft returns complex tensor (of shape [B,N,T]); so convert to magnitude
# guard is needed for sqrt if grads are passed through
guard = 0 if not self.use_grads else CONSTANT
x = torch.view_as_real(x)
x = torch.sqrt(x.pow(2).sum(-1) + guard)
if self.training and self.nb_augmentation_prob > 0.0:
for idx in range(x.shape[0]):
if self._rng.random() < self.nb_augmentation_prob:
x[idx, self._nb_max_fft_bin :, :] = 0.0
# get power spectrum
if self.mag_power != 1.0:
x = x.pow(self.mag_power)
# return plain spectrogram if required
if linear_spec:
return x, seq_len
# dot with filterbank energies
x = torch.matmul(self.fb.to(x.dtype), x)
# log features if required
if self.log:
if self.log_zero_guard_type == "add":
x = torch.log(x + self.log_zero_guard_value_fn(x))
elif self.log_zero_guard_type == "clamp":
x = torch.log(torch.clamp(x, min=self.log_zero_guard_value_fn(x)))
else:
raise ValueError("log_zero_guard_type was not understood")
# frame splicing if required
if self.frame_splicing > 1:
x = splice_frames(x, self.frame_splicing)
# normalize if required
if self.normalize:
x, _, _ = normalize_batch(x, seq_len, normalize_type=self.normalize)
# mask to zero any values beyond seq_len in batch, pad to multiple of `pad_to` (for efficiency)
max_len = x.size(-1)
mask = torch.arange(max_len, device=x.device)
mask = mask.repeat(x.size(0), 1) >= seq_len.unsqueeze(1)
x = x.masked_fill(mask.unsqueeze(1).type(torch.bool).to(device=x.device), self.pad_value)
del mask
pad_to = self.pad_to
if pad_to == "max":
x = nn.functional.pad(x, (0, self.max_length - x.size(-1)), value=self.pad_value)
elif pad_to > 0:
pad_amt = x.size(-1) % pad_to
if pad_amt != 0:
x = nn.functional.pad(x, (0, pad_to - pad_amt), value=self.pad_value)
return x, seq_len
class FilterbankFeaturesTA(nn.Module):
"""
Exportable, `torchaudio`-based implementation of Mel Spectrogram extraction.
See `AudioToMelSpectrogramPreprocessor` for args.
"""
def __init__(
self,
sample_rate: int = 16000,
n_window_size: int = 320,
n_window_stride: int = 160,
normalize: Optional[str] = "per_feature",
nfilt: int = 64,
n_fft: Optional[int] = None,
preemph: float = 0.97,
lowfreq: float = 0,
highfreq: Optional[float] = None,
log: bool = True,
log_zero_guard_type: str = "add",
log_zero_guard_value: Union[float, str] = 2**-24,
dither: float = 1e-5,
window: str = "hann",
pad_to: int = 0,
pad_value: float = 0.0,
mel_norm="slaney",
# Seems like no one uses these options anymore. Don't convolute the code by supporting thm.
use_grads: bool = False, # Deprecated arguments; kept for config compatibility
max_duration: float = 16.7, # Deprecated arguments; kept for config compatibility
frame_splicing: int = 1, # Deprecated arguments; kept for config compatibility
exact_pad: bool = False, # Deprecated arguments; kept for config compatibility
nb_augmentation_prob: float = 0.0, # Deprecated arguments; kept for config compatibility
nb_max_freq: int = 4000, # Deprecated arguments; kept for config compatibility
mag_power: float = 2.0, # Deprecated arguments; kept for config compatibility
rng: Optional[random.Random] = None, # Deprecated arguments; kept for config compatibility
stft_exact_pad: bool = False, # Deprecated arguments; kept for config compatibility
stft_conv: bool = False, # Deprecated arguments; kept for config compatibility
):
super().__init__()
if not HAVE_TORCHAUDIO:
raise ValueError(f"Need to install torchaudio to instantiate a {self.__class__.__name__}")
# Make sure log zero guard is supported, if given as a string
supported_log_zero_guard_strings = {"eps", "tiny"}
if isinstance(log_zero_guard_value, str) and log_zero_guard_value not in supported_log_zero_guard_strings:
raise ValueError(
f"Log zero guard value must either be a float or a member of {supported_log_zero_guard_strings}"
)
# Copied from `AudioPreprocessor` due to the ad-hoc structuring of the Mel Spec extractor class
self.torch_windows = {
'hann': torch.hann_window,
'hamming': torch.hamming_window,
'blackman': torch.blackman_window,
'bartlett': torch.bartlett_window,
'ones': torch.ones,
None: torch.ones,
}
# Ensure we can look up the window function
if window not in self.torch_windows:
raise ValueError(f"Got window value '{window}' but expected a member of {self.torch_windows.keys()}")
self.win_length = n_window_size
self.hop_length = n_window_stride
self._sample_rate = sample_rate
self._normalize_strategy = normalize
self._use_log = log
self._preemphasis_value = preemph
self.log_zero_guard_type = log_zero_guard_type
self.log_zero_guard_value: Union[str, float] = log_zero_guard_value
self.dither = dither
self.pad_to = pad_to
self.pad_value = pad_value
self.n_fft = n_fft
self._mel_spec_extractor: torchaudio.transforms.MelSpectrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=self._sample_rate,
win_length=self.win_length,
hop_length=self.hop_length,
n_mels=nfilt,
window_fn=self.torch_windows[window],
mel_scale="slaney",
norm=mel_norm,
n_fft=n_fft,
f_max=highfreq,
f_min=lowfreq,
wkwargs={"periodic": False},
)
@property
def filter_banks(self):
"""Matches the analogous class"""
return self._mel_spec_extractor.mel_scale.fb
def _resolve_log_zero_guard_value(self, dtype: torch.dtype) -> float:
if isinstance(self.log_zero_guard_value, float):
return self.log_zero_guard_value
return getattr(torch.finfo(dtype), self.log_zero_guard_value)
def _apply_dithering(self, signals: torch.Tensor) -> torch.Tensor:
if self.training and self.dither > 0.0:
noise = torch.randn_like(signals) * self.dither
signals = signals + noise
return signals
def _apply_preemphasis(self, signals: torch.Tensor) -> torch.Tensor:
if self._preemphasis_value is not None:
padded = torch.nn.functional.pad(signals, (1, 0))
signals = signals - self._preemphasis_value * padded[:, :-1]
return signals
def _compute_output_lengths(self, input_lengths: torch.Tensor) -> torch.Tensor:
out_lengths = input_lengths.div(self.hop_length, rounding_mode="floor").add(1).long()
return out_lengths
def _apply_pad_to(self, features: torch.Tensor) -> torch.Tensor:
# Only apply during training; else need to capture dynamic shape for exported models
if not self.training or self.pad_to == 0 or features.shape[-1] % self.pad_to == 0:
return features
pad_length = self.pad_to - (features.shape[-1] % self.pad_to)
return torch.nn.functional.pad(features, pad=(0, pad_length), value=self.pad_value)
def _apply_log(self, features: torch.Tensor) -> torch.Tensor:
if self._use_log:
zero_guard = self._resolve_log_zero_guard_value(features.dtype)
if self.log_zero_guard_type == "add":
features = features + zero_guard
elif self.log_zero_guard_type == "clamp":
features = features.clamp(min=zero_guard)
else:
raise ValueError(f"Unsupported log zero guard type: '{self.log_zero_guard_type}'")
features = features.log()
return features
def _extract_spectrograms(self, signals: torch.Tensor) -> torch.Tensor:
# Complex FFT needs to be done in single precision
with torch.amp.autocast('cuda', enabled=False):
features = self._mel_spec_extractor(waveform=signals)
return features
def _apply_normalization(self, features: torch.Tensor, lengths: torch.Tensor, eps: float = 1e-5) -> torch.Tensor:
# For consistency, this function always does a masked fill even if not normalizing.
mask: torch.Tensor = make_seq_mask_like(lengths=lengths, like=features, time_dim=-1, valid_ones=False)
features = features.masked_fill(mask, 0.0)
# Maybe don't normalize
if self._normalize_strategy is None:
return features
# Use the log zero guard for the sqrt zero guard
guard_value = self._resolve_log_zero_guard_value(features.dtype)
if self._normalize_strategy == "per_feature" or self._normalize_strategy == "all_features":
# 'all_features' reduces over each sample; 'per_feature' reduces over each channel
reduce_dim = 2
if self._normalize_strategy == "all_features":
reduce_dim = [1, 2]
# [B, D, T] -> [B, D, 1] or [B, 1, 1]
means = features.sum(dim=reduce_dim, keepdim=True).div(lengths.view(-1, 1, 1))
stds = (
features.sub(means)
.masked_fill(mask, 0.0)
.pow(2.0)
.sum(dim=reduce_dim, keepdim=True) # [B, D, T] -> [B, D, 1] or [B, 1, 1]
.div(lengths.view(-1, 1, 1) - 1) # assume biased estimator
.clamp(min=guard_value) # avoid sqrt(0)
.sqrt()
)
features = (features - means) / (stds + eps)
else:
# Deprecating constant std/mean
raise ValueError(f"Unsupported norm type: '{self._normalize_strategy}")
features = features.masked_fill(mask, 0.0)
return features
def forward(self, input_signal: torch.Tensor, length: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
feature_lengths = self._compute_output_lengths(input_lengths=length)
signals = self._apply_dithering(signals=input_signal)
signals = self._apply_preemphasis(signals=signals)
features = self._extract_spectrograms(signals=signals)
features = self._apply_log(features=features)
features = self._apply_normalization(features=features, lengths=feature_lengths)
features = self._apply_pad_to(features=features)
return features, feature_lengths