File size: 8,540 Bytes
99269d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import random
from typing import Union

import numpy as np

import torch
import torch.nn as nn


class SpecAugment(nn.Module):
    """
    Zeroes out(cuts) random continuous horisontal or
    vertical segments of the spectrogram as described in
    SpecAugment (https://arxiv.org/abs/1904.08779).

    params:
    freq_masks - how many frequency segments should be cut
    time_masks - how many time segments should be cut
    freq_width - maximum number of frequencies to be cut in one segment
    time_width - maximum number of time steps to be cut in one segment.
        Can be a positive integer or a float value in the range [0, 1].
        If positive integer value, defines maximum number of time steps
        to be cut in one segment.
        If a float value, defines maximum percentage of timesteps that
        are cut adaptively.
    use_vectorized_code - GPU-based implementation with batched masking and GPU rng,
        setting it to False reverts to the legacy implementation.
        Fast implementation is inspired by torchaudio:
        https://github.com/pytorch/audio/blob/ea437b31ce316ea3d66fe73768c0dcb94edb79ad/src/torchaudio/functional/functional.py#L816
    """

    FREQ_AXIS = 1  # Frequency axis in the spectrogram tensor
    TIME_AXIS = 2  # Time axis in the spectrogram tensor

    def __init__(
        self,
        freq_masks: int = 0,
        time_masks: int = 0,
        freq_width: int = 10,
        time_width: Union[int, float] = 10,
        rng: random.Random = None,
        mask_value: float = 0.0,
        use_vectorized_code: bool = True,
    ):
        super().__init__()

        self._rng = random.Random() if rng is None else rng

        self.freq_masks = freq_masks
        self.time_masks = time_masks

        self.freq_width = freq_width
        self.time_width = time_width

        self.mask_value = mask_value
        self.use_vectorized_code = use_vectorized_code

        if isinstance(time_width, int):
            self.adaptive_temporal_width = False
        else:
            if time_width > 1.0 or time_width < 0.0:
                raise ValueError("If `time_width` is a float value, must be in range [0, 1]")

            self.adaptive_temporal_width = True

    @torch.no_grad()
    def forward(self, input_spec, length):
        if self.use_vectorized_code:
            return self._forward_vectorized(input_spec, length)
        else:
            return self._forward_legacy(input_spec, length)

    def _forward_legacy(self, input_spec, length):
        batch_size, num_freq_bins, _ = input_spec.shape
        # Move lengths to CPU before repeated indexing
        lengths_cpu = length.cpu().numpy()
        # Generate a numpy boolean mask. `True` elements represent where the input spec will be augmented.
        fill_mask: np.array = np.full(shape=input_spec.shape, fill_value=False)
        freq_start_upper_bound = num_freq_bins - self.freq_width
        # Choose different mask ranges for each element of the batch
        for idx in range(batch_size):
            # Set freq masking
            for _ in range(self.freq_masks):
                start = self._rng.randint(0, freq_start_upper_bound)
                width = self._rng.randint(0, self.freq_width)
                fill_mask[idx, start : start + width, :] = True

            # Derive time width, sometimes based percentage of input length.
            if self.adaptive_temporal_width:
                time_max_width = max(1, int(lengths_cpu[idx] * self.time_width))
            else:
                time_max_width = self.time_width
            time_start_upper_bound = max(1, lengths_cpu[idx] - time_max_width)

            # Set time masking
            for _ in range(self.time_masks):
                start = self._rng.randint(0, time_start_upper_bound)
                width = self._rng.randint(0, time_max_width)
                fill_mask[idx, :, start : start + width] = True
        # Bring the mask to device and fill spec
        fill_mask = torch.from_numpy(fill_mask).to(input_spec.device)
        masked_spec = input_spec.masked_fill(mask=fill_mask, value=self.mask_value)
        return masked_spec

    def _forward_vectorized(self, input_spec: torch.Tensor, length: torch.Tensor) -> torch.Tensor:
        # time masks
        input_spec = self._apply_masks(
            input_spec=input_spec,
            num_masks=self.time_masks,
            length=length,
            width=self.time_width,
            axis=self.TIME_AXIS,
            mask_value=self.mask_value,
        )
        # freq masks
        input_spec = self._apply_masks(
            input_spec=input_spec,
            num_masks=self.freq_masks,
            length=length,
            width=self.freq_width,
            axis=self.FREQ_AXIS,
            mask_value=self.mask_value,
        )
        return input_spec

    def _apply_masks(
        self,
        input_spec: torch.Tensor,
        num_masks: int,
        length: torch.Tensor,
        width: Union[int, float],
        mask_value: float,
        axis: int,
    ) -> torch.Tensor:

        assert axis in (
            self.FREQ_AXIS,
            self.TIME_AXIS,
        ), f"Axis can be only be equal to frequency \
            ({self.FREQ_AXIS}) or time ({self.TIME_AXIS}). Received: {axis=}"
        assert not (
            isinstance(width, float) and axis == self.FREQ_AXIS
        ), "Float width supported \
            only with time axis."

        batch_size = input_spec.shape[0]
        axis_length = input_spec.shape[axis]

        # If width is float then it is transformed into a tensor
        if axis == self.TIME_AXIS and isinstance(width, float):
            width = torch.clamp(width * length, max=axis_length).unsqueeze(1)

        # Generate [0-1) random numbers and then scale the tensors.
        # Use float32 dtype for begin/end mask markers before they are quantized to long.
        mask_width = torch.rand((batch_size, num_masks), device=input_spec.device, dtype=torch.float32) * width
        mask_width = mask_width.long()
        mask_start = torch.rand((batch_size, num_masks), device=input_spec.device, dtype=torch.float32)

        if axis == self.TIME_AXIS:
            # length can only be used for the time axis
            mask_start = mask_start * (length.unsqueeze(1) - mask_width)
        else:
            mask_start = mask_start * (axis_length - mask_width)

        mask_start = mask_start.long()
        mask_end = mask_start + mask_width

        # Create mask values using vectorized indexing
        indices = torch.arange(axis_length, device=input_spec.device)
        # Create a mask_tensor with all the indices.
        # The mask_tensor shape is (batch_size, num_masks, axis_length).
        mask_tensor = (indices >= mask_start.unsqueeze(-1)) & (indices < mask_end.unsqueeze(-1))

        # Reduce masks to one mask
        mask_tensor = mask_tensor.any(dim=1)

        # Create a final mask that aligns with the full tensor
        mask = torch.zeros_like(input_spec, dtype=torch.bool)
        if axis == self.TIME_AXIS:
            mask_ranges = mask_tensor[:, None, :]
        else:  # axis == self.FREQ_AXIS
            mask_ranges = mask_tensor[:, :, None]
        mask[:, :, :] = mask_ranges

        # Apply the mask value
        return input_spec.masked_fill(mask=mask, value=mask_value)


class SpecCutout(nn.Module):
    """
    Zeroes out(cuts) random rectangles in the spectrogram
    as described in (https://arxiv.org/abs/1708.04552).

    params:
    rect_masks - how many rectangular masks should be cut
    rect_freq - maximum size of cut rectangles along the frequency dimension
    rect_time - maximum size of cut rectangles along the time dimension
    """

    def __init__(self, rect_masks=0, rect_time=5, rect_freq=20, rng=None):
        super(SpecCutout, self).__init__()

        self._rng = random.Random() if rng is None else rng

        self.rect_masks = rect_masks
        self.rect_time = rect_time
        self.rect_freq = rect_freq

    @torch.no_grad()
    def forward(self, input_spec):
        sh = input_spec.shape

        for idx in range(sh[0]):
            for i in range(self.rect_masks):
                rect_x = self._rng.randint(0, sh[1] - self.rect_freq)
                rect_y = self._rng.randint(0, sh[2] - self.rect_time)

                w_x = self._rng.randint(0, self.rect_freq)
                w_y = self._rng.randint(0, self.rect_time)

                input_spec[idx, rect_x : rect_x + w_x, rect_y : rect_y + w_y] = 0.0

        return input_spec