File size: 5,188 Bytes
99269d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from dataclasses import dataclass
from typing import Optional, Union, Tuple

from rich import print

import torch
import torch.nn as nn

from transformers import PreTrainedModel
from transformers.utils import ModelOutput

from .configuration_xvector import XVectorConfig
from .audio_processing import AudioToMelSpectrogramPreprocessor
from .audio_processing import SpectrogramAugmentation
from .conv_asr import XVectorEncoder, SpeakerDecoder
from .angular_loss import AdditiveMarginSoftmaxLoss, AdditiveAngularMarginSoftmaxLoss


@dataclass
class XVectorBaseModelOutput(ModelOutput):

    encoder_outputs: torch.FloatTensor = None
    extract_features: torch.FloatTensor = None
    output_lengths: torch.FloatTensor = None


@dataclass
class XVectorSequenceClassifierOutput(ModelOutput):

    loss: torch.FloatTensor = None
    logits: torch.FloatTensor = None
    embeddings: torch.FloatTensor = None


class XVectorPreTrainedModel(PreTrainedModel):

    config_class = XVectorConfig
    base_model_prefix = "xvector"
    main_input_name = "input_values"

    def _init_weights(self, module):
        """Initialize the weights"""
        config: XVectorConfig = self.config
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Conv2d):
            module.weight.data.normal_(mean=0.0, std=config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
            nn.init.constant_(module.weight, 1)
            nn.init.constant_(module.bias, 0)

    @property
    def num_weights(self):
        """
        Utility property that returns the total number of parameters of NeuralModule.
        """
        return self._num_weights()

    @torch.jit.ignore
    def _num_weights(self):
        num: int = 0
        for p in self.parameters():
            if p.requires_grad:
                num += p.numel()
        return num


class XVectorModel(XVectorPreTrainedModel):

    def __init__(self, config: XVectorConfig):
        super().__init__(config)
        self.config = config

        self.preprocessor = AudioToMelSpectrogramPreprocessor(**config.mel_spectrogram_config)
        self.spec_augment = SpectrogramAugmentation(**config.spectrogram_augmentation_config)
        self.encoder = XVectorEncoder(**config.encoder_config)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_values: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None, 
    ) -> Union[Tuple, XVectorBaseModelOutput]:
        if attention_mask is None:
            attention_mask = torch.ones_like(input_values).to(input_values)
        lengths = attention_mask.sum(dim=1).long()
        extract_features, output_lengths = self.preprocessor(input_values, lengths)
        if self.training:
            extract_features = self.spec_augment(extract_features, output_lengths)
        encoder_outputs, output_lengths = self.encoder(extract_features, output_lengths)

        return XVectorBaseModelOutput(
            encoder_outputs=encoder_outputs, 
            extract_features=extract_features, 
            output_lengths=output_lengths, 
        )


class XVectorForSequenceClassification(XVectorPreTrainedModel):

    def __init__(self, config: XVectorConfig):
        super().__init__(config)

        self.xvector = XVectorModel(config)
        self.classifier = SpeakerDecoder(**config.decoder_config)

        if config.objective == 'additive_angular_margin':
            self.loss_fct = AdditiveAngularMarginSoftmaxLoss(**config.objective_config)
        elif config.objective == 'additive_margin':
            self.loss_fct = AdditiveMarginSoftmaxLoss(**config.objective_config)
        elif config.objective == 'cross_entropy':
            self.loss_fct = nn.CrossEntropyLoss(**config.objective_config)

        self.init_weights()

    def freeze_base_model(self):
        for param in self.xvector.parameters():
            param.requires_grad = False

    def forward(
        self,
        input_values: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, XVectorSequenceClassifierOutput]:
        xvector_outputs = self.xvector(
            input_values, 
            attention_mask, 
        )
        logits, output_embeddings = self.classifier(
            xvector_outputs.encoder_outputs, 
            xvector_outputs.output_lengths
        )
        logits = logits.view(-1, self.config.num_labels)

        loss = None
        if labels is not None:
            loss = self.loss_fct(logits, labels.view(-1))

        return XVectorSequenceClassifierOutput(
            loss=loss,
            logits=logits,
            embeddings=output_embeddings, 
        )