File size: 15,974 Bytes
99269d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import math
from packaging import version
from dataclasses import dataclass
from abc import ABC, abstractmethod
import torch
try:
import torchaudio
import torchaudio.functional
import torchaudio.transforms
TORCHAUDIO_VERSION = version.parse(torchaudio.__version__)
TORCHAUDIO_VERSION_MIN = version.parse('0.5')
HAVE_TORCHAUDIO = True
except ModuleNotFoundError:
HAVE_TORCHAUDIO = False
from .logging import logger
from .module import NeuralModule
from .features import FilterbankFeatures, FilterbankFeaturesTA
from .spectrogram_augment import SpecCutout, SpecAugment
class AudioPreprocessor(NeuralModule, ABC):
"""
An interface for Neural Modules that performs audio pre-processing,
transforming the wav files to features.
"""
def __init__(self, win_length, hop_length):
super().__init__()
self.win_length = win_length
self.hop_length = hop_length
self.torch_windows = {
'hann': torch.hann_window,
'hamming': torch.hamming_window,
'blackman': torch.blackman_window,
'bartlett': torch.bartlett_window,
'ones': torch.ones,
None: torch.ones,
}
# Normally, when you call to(dtype) on a torch.nn.Module, all
# floating point parameters and buffers will change to that
# dtype, rather than being float32. The AudioPreprocessor
# classes, uniquely, don't actually have any parameters or
# buffers from what I see. In addition, we want the input to
# the preprocessor to be float32, but need to create the
# output in appropriate precision. We have this empty tensor
# here just to detect which dtype tensor this module should
# output at the end of execution.
self.register_buffer("dtype_sentinel_tensor", torch.tensor((), dtype=torch.float32), persistent=False)
@torch.no_grad()
def forward(self, input_signal, length):
processed_signal, processed_length = self.get_features(input_signal.to(torch.float32), length)
processed_signal = processed_signal.to(self.dtype_sentinel_tensor.dtype)
return processed_signal, processed_length
@abstractmethod
def get_features(self, input_signal, length):
# Called by forward(). Subclasses should implement this.
pass
class AudioToMelSpectrogramPreprocessor(AudioPreprocessor):
"""Featurizer module that converts wavs to mel spectrograms.
Args:
sample_rate (int): Sample rate of the input audio data.
Defaults to 16000
window_size (float): Size of window for fft in seconds
Defaults to 0.02
window_stride (float): Stride of window for fft in seconds
Defaults to 0.01
n_window_size (int): Size of window for fft in samples
Defaults to None. Use one of window_size or n_window_size.
n_window_stride (int): Stride of window for fft in samples
Defaults to None. Use one of window_stride or n_window_stride.
window (str): Windowing function for fft. can be one of ['hann',
'hamming', 'blackman', 'bartlett']
Defaults to "hann"
normalize (str): Can be one of ['per_feature', 'all_features']; all
other options disable feature normalization. 'all_features'
normalizes the entire spectrogram to be mean 0 with std 1.
'pre_features' normalizes per channel / freq instead.
Defaults to "per_feature"
n_fft (int): Length of FT window. If None, it uses the smallest power
of 2 that is larger than n_window_size.
Defaults to None
preemph (float): Amount of pre emphasis to add to audio. Can be
disabled by passing None.
Defaults to 0.97
features (int): Number of mel spectrogram freq bins to output.
Defaults to 64
lowfreq (int): Lower bound on mel basis in Hz.
Defaults to 0
highfreq (int): Lower bound on mel basis in Hz.
Defaults to None
log (bool): Log features.
Defaults to True
log_zero_guard_type(str): Need to avoid taking the log of zero. There
are two options: "add" or "clamp".
Defaults to "add".
log_zero_guard_value(float, or str): Add or clamp requires the number
to add with or clamp to. log_zero_guard_value can either be a float
or "tiny" or "eps". torch.finfo is used if "tiny" or "eps" is
passed.
Defaults to 2**-24.
dither (float): Amount of white-noise dithering.
Defaults to 1e-5
pad_to (int): Ensures that the output size of the time dimension is
a multiple of pad_to.
Defaults to 16
frame_splicing (int): Defaults to 1
exact_pad (bool): If True, sets stft center to False and adds padding, such that num_frames = audio_length
// hop_length. Defaults to False.
pad_value (float): The value that shorter mels are padded with.
Defaults to 0
mag_power (float): The power that the linear spectrogram is raised to
prior to multiplication with mel basis.
Defaults to 2 for a power spec
rng : Random number generator
nb_augmentation_prob (float) : Probability with which narrowband augmentation would be applied to
samples in the batch.
Defaults to 0.0
nb_max_freq (int) : Frequency above which all frequencies will be masked for narrowband augmentation.
Defaults to 4000
use_torchaudio: Whether to use the `torchaudio` implementation.
mel_norm: Normalization used for mel filterbank weights.
Defaults to 'slaney' (area normalization)
stft_exact_pad: Deprecated argument, kept for compatibility with older checkpoints.
stft_conv: Deprecated argument, kept for compatibility with older checkpoints.
"""
def __init__(
self,
sample_rate=16000,
window_size=0.02,
window_stride=0.01,
n_window_size=None,
n_window_stride=None,
window="hann",
normalize="per_feature",
n_fft=None,
preemph=0.97,
features=64,
lowfreq=0,
highfreq=None,
log=True,
log_zero_guard_type="add",
log_zero_guard_value=2**-24,
dither=1e-5,
pad_to=16,
frame_splicing=1,
exact_pad=False,
pad_value=0,
mag_power=2.0,
rng=None,
nb_augmentation_prob=0.0,
nb_max_freq=4000,
use_torchaudio: bool = False,
mel_norm="slaney",
):
super().__init__(n_window_size, n_window_stride)
self._sample_rate = sample_rate
if window_size and n_window_size:
raise ValueError(f"{self} received both window_size and " f"n_window_size. Only one should be specified.")
if window_stride and n_window_stride:
raise ValueError(
f"{self} received both window_stride and " f"n_window_stride. Only one should be specified."
)
if window_size:
n_window_size = int(window_size * self._sample_rate)
if window_stride:
n_window_stride = int(window_stride * self._sample_rate)
# Given the long and similar argument list, point to the class and instantiate it by reference
if not use_torchaudio:
logger.warning("Current only support FilterbankFeatures with torchaudio.")
featurizer_class = FilterbankFeaturesTA
else:
featurizer_class = FilterbankFeaturesTA
self.featurizer = featurizer_class(
sample_rate=self._sample_rate,
n_window_size=n_window_size,
n_window_stride=n_window_stride,
window=window,
normalize=normalize,
n_fft=n_fft,
preemph=preemph,
nfilt=features,
lowfreq=lowfreq,
highfreq=highfreq,
log=log,
log_zero_guard_type=log_zero_guard_type,
log_zero_guard_value=log_zero_guard_value,
dither=dither,
pad_to=pad_to,
frame_splicing=frame_splicing,
exact_pad=exact_pad,
pad_value=pad_value,
mag_power=mag_power,
rng=rng,
nb_augmentation_prob=nb_augmentation_prob,
nb_max_freq=nb_max_freq,
mel_norm=mel_norm,
)
def get_features(self, input_signal, length):
return self.featurizer(input_signal, length) # return tensor shape of (B, D, T)
@property
def filter_banks(self):
return self.featurizer.filter_banks
class AudioToMFCCPreprocessor(AudioPreprocessor):
"""Preprocessor that converts wavs to MFCCs.
Uses torchaudio.transforms.MFCC.
Args:
sample_rate: The sample rate of the audio.
Defaults to 16000.
window_size: Size of window for fft in seconds. Used to calculate the
win_length arg for mel spectrogram.
Defaults to 0.02
window_stride: Stride of window for fft in seconds. Used to caculate
the hop_length arg for mel spect.
Defaults to 0.01
n_window_size: Size of window for fft in samples
Defaults to None. Use one of window_size or n_window_size.
n_window_stride: Stride of window for fft in samples
Defaults to None. Use one of window_stride or n_window_stride.
window: Windowing function for fft. can be one of ['hann',
'hamming', 'blackman', 'bartlett', 'none', 'null'].
Defaults to 'hann'
n_fft: Length of FT window. If None, it uses the smallest power of 2
that is larger than n_window_size.
Defaults to None
lowfreq (int): Lower bound on mel basis in Hz.
Defaults to 0
highfreq (int): Lower bound on mel basis in Hz.
Defaults to None
n_mels: Number of mel filterbanks.
Defaults to 64
n_mfcc: Number of coefficients to retain
Defaults to 64
dct_type: Type of discrete cosine transform to use
norm: Type of norm to use
log: Whether to use log-mel spectrograms instead of db-scaled.
Defaults to True.
"""
def __init__(
self,
sample_rate=16000,
window_size=0.02,
window_stride=0.01,
n_window_size=None,
n_window_stride=None,
window='hann',
n_fft=None,
lowfreq=0.0,
highfreq=None,
n_mels=64,
n_mfcc=64,
dct_type=2,
norm='ortho',
log=True,
):
self._sample_rate = sample_rate
if not HAVE_TORCHAUDIO:
logger.warning('Could not import torchaudio. Some features might not work.')
raise ModuleNotFoundError(
"torchaudio is not installed but is necessary for "
"AudioToMFCCPreprocessor. We recommend you try "
"building it from source for the PyTorch version you have."
)
if window_size and n_window_size:
raise ValueError(f"{self} received both window_size and " f"n_window_size. Only one should be specified.")
if window_stride and n_window_stride:
raise ValueError(
f"{self} received both window_stride and " f"n_window_stride. Only one should be specified."
)
# Get win_length (n_window_size) and hop_length (n_window_stride)
if window_size:
n_window_size = int(window_size * self._sample_rate)
if window_stride:
n_window_stride = int(window_stride * self._sample_rate)
super().__init__(n_window_size, n_window_stride)
mel_kwargs = {}
mel_kwargs['f_min'] = lowfreq
mel_kwargs['f_max'] = highfreq
mel_kwargs['n_mels'] = n_mels
mel_kwargs['n_fft'] = n_fft or 2 ** math.ceil(math.log2(n_window_size))
mel_kwargs['win_length'] = n_window_size
mel_kwargs['hop_length'] = n_window_stride
# Set window_fn. None defaults to torch.ones.
window_fn = self.torch_windows.get(window, None)
if window_fn is None:
raise ValueError(
f"Window argument for AudioProcessor is invalid: {window}."
f"For no window function, use 'ones' or None."
)
mel_kwargs['window_fn'] = window_fn
# Use torchaudio's implementation of MFCCs as featurizer
self.featurizer = torchaudio.transforms.MFCC(
sample_rate=self._sample_rate,
n_mfcc=n_mfcc,
dct_type=dct_type,
norm=norm,
log_mels=log,
melkwargs=mel_kwargs,
)
def get_features(self, input_signal, length):
features = self.featurizer(input_signal)
seq_len = torch.ceil(length.to(torch.float32) / self.hop_length).to(dtype=torch.long)
return features, seq_len
class SpectrogramAugmentation(NeuralModule):
"""
Performs time and freq cuts in one of two ways.
SpecAugment zeroes out vertical and horizontal sections as described in
SpecAugment (https://arxiv.org/abs/1904.08779). Arguments for use with
SpecAugment are `freq_masks`, `time_masks`, `freq_width`, and `time_width`.
SpecCutout zeroes out rectangulars as described in Cutout
(https://arxiv.org/abs/1708.04552). Arguments for use with Cutout are
`rect_masks`, `rect_freq`, and `rect_time`.
Args:
freq_masks (int): how many frequency segments should be cut.
Defaults to 0.
time_masks (int): how many time segments should be cut
Defaults to 0.
freq_width (int): maximum number of frequencies to be cut in one
segment.
Defaults to 10.
time_width (int): maximum number of time steps to be cut in one
segment
Defaults to 10.
rect_masks (int): how many rectangular masks should be cut
Defaults to 0.
rect_freq (int): maximum size of cut rectangles along the frequency
dimension
Defaults to 5.
rect_time (int): maximum size of cut rectangles along the time
dimension
Defaults to 25.
use_numba_spec_augment: use numba code for Spectrogram augmentation
use_vectorized_spec_augment: use vectorized code for Spectrogram augmentation
"""
def __init__(
self,
freq_masks=0,
time_masks=0,
freq_width=10,
time_width=10,
rect_masks=0,
rect_time=5,
rect_freq=20,
rng=None,
mask_value=0.0,
use_vectorized_spec_augment: bool = True,
):
super().__init__()
if rect_masks > 0:
self.spec_cutout = SpecCutout(
rect_masks=rect_masks,
rect_time=rect_time,
rect_freq=rect_freq,
rng=rng,
)
# self.spec_cutout.to(self._device)
else:
self.spec_cutout = lambda input_spec: input_spec
if freq_masks + time_masks > 0:
self.spec_augment = SpecAugment(
freq_masks=freq_masks,
time_masks=time_masks,
freq_width=freq_width,
time_width=time_width,
rng=rng,
mask_value=mask_value,
use_vectorized_code=use_vectorized_spec_augment,
)
else:
self.spec_augment = lambda input_spec, length: input_spec
def forward(self, input_spec, length):
augmented_spec = self.spec_cutout(input_spec=input_spec)
augmented_spec = self.spec_augment(input_spec=augmented_spec, length=length)
return augmented_spec # # return tensor shape of (B, D, T) |