File size: 6,440 Bytes
210822a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from typing import Any, Union

from transformers.configuration_utils import PretrainedConfig


class XVectorConfig(PretrainedConfig):

    def __init__(
        self, 
        sample_rate: int = 16000,
        window_size: float = 0.02,
        window_stride: float = 0.01,
        n_window_size: Any = None,
        n_window_stride: Any = None,
        window: str = "hann",
        normalize: str = "per_feature",
        n_fft: Any = None,
        preemph: float = 0.97,
        features: int = 64,
        lowfreq: int = 0,
        highfreq: Any = None,
        log: bool = True,
        log_zero_guard_type: str = "add",
        log_zero_guard_value: Any = 2 ** -24,
        dither: float = 0.00001,
        pad_to: int = 16,
        frame_splicing: int = 1,
        exact_pad: bool = False,
        pad_value: int = 0,
        mag_power: float = 2,
        rng: Any = None,
        nb_augmentation_prob: float = 0,
        nb_max_freq: int = 4000,
        use_torchaudio: bool = True,
        mel_norm: str = "slaney", 
        freq_masks: int = 0,
        time_masks: int = 0,
        freq_width: int = 10,
        time_width: int = 10,
        rect_masks: int = 0,
        rect_time: int = 5,
        rect_freq: int = 20,
        mask_value: float = 0,
        use_vectorized_spec_augment: bool = True, 
        filters: list = [512, 512, 512, 512, 1500],
        kernel_sizes: list = [5, 3, 3, 1, 1],
        dilations: list = [1, 2, 3, 1, 1],
        init_mode: str = 'xavier_uniform', 
        emb_sizes: Union[int, list] = 256,
        pool_mode: str = 'xvector',
        attention_channels: int = 128,
        objective: str = 'cross_entropy', # additive_margin, additive_angular_margin, cross_entropy
        angular_scale = 30, 
        angular_margin: float = 0.2, 
        label_smoothing: float = 0.0, 
        initializer_range=0.02,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        **kwargs,
    ):
        super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)

        self.initializer_range = initializer_range

        # Mel-spectrogram configuration
        self.sample_rate = sample_rate
        self.window_size = window_size
        self.window_stride = window_stride
        self.n_window_size = n_window_size
        self.n_window_stride = n_window_stride
        self.window = window
        self.normalize = normalize
        self.n_fft = n_fft
        self.preemph = preemph
        self.features = features
        self.lowfreq = lowfreq
        self.highfreq = highfreq
        self.log = log
        self.log_zero_guard_type = log_zero_guard_type
        self.log_zero_guard_value = log_zero_guard_value
        self.dither = dither
        self.pad_to = pad_to
        self.frame_splicing = frame_splicing
        self.exact_pad = exact_pad
        self.pad_value = pad_value
        self.mag_power = mag_power
        self.rng = rng
        self.nb_augmentation_prob = nb_augmentation_prob
        self.nb_max_freq = nb_max_freq
        self.use_torchaudio = use_torchaudio
        self.mel_norm = mel_norm
        self.mel_spectrogram_config = {
            "sample_rate": sample_rate,
            "window_size": window_size, 
            "window_stride": window_stride,
            "n_window_size": n_window_size,
            "n_window_stride": n_window_stride,
            "window": window,
            "normalize": normalize,
            "n_fft": n_fft,
            "preemph": preemph,
            "features": features,
            "lowfreq": lowfreq,
            "highfreq": highfreq,
            "log": log,
            "log_zero_guard_type": log_zero_guard_type,
            "log_zero_guard_value": log_zero_guard_value,
            "dither": dither,
            "pad_to": pad_to,
            "frame_splicing": frame_splicing,
            "exact_pad": exact_pad,
            "pad_value": pad_value,
            "mag_power": mag_power,
            "rng": rng,
            "nb_augmentation_prob": nb_augmentation_prob,
            "nb_max_freq": nb_max_freq,
            "use_torchaudio": use_torchaudio,
            "mel_norm": mel_norm,
        }

        # Spectrogram Augmentation configuration
        self.freq_masks = freq_masks
        self.time_masks = time_masks
        self.freq_width = freq_width
        self.time_width = time_width
        self.rect_masks = rect_masks
        self.rect_time = rect_time
        self.rect_freq = rect_freq
        self.mask_value = mask_value
        self.use_vectorized_spec_augment = use_vectorized_spec_augment
        self.spectrogram_augmentation_config = {
            "freq_masks": freq_masks, 
            "time_masks": time_masks,
            "freq_width": freq_width,
            "time_width": time_width,
            "rect_masks": rect_masks,
            "rect_time": rect_time,
            "rect_freq": rect_freq,
            "mask_value": mask_value,
            "use_vectorized_spec_augment": use_vectorized_spec_augment,
        }

        # Encoder configuration
        self.feat_in = features
        self.filters = filters
        self.kernel_sizes = kernel_sizes
        self.dilations = dilations
        self.init_mode = init_mode
        self.encoder_config = {
            "feat_in": features,
            "filters": filters,
            "kernel_sizes": kernel_sizes,
            "dilations": dilations,
            "init_mode": init_mode,
        }

        # Decoder configuration
        self.emb_sizes = emb_sizes
        self.pool_mode = pool_mode
        self.angular = True if objective in ['additive_angular_margin'] else False
        self.attention_channels = attention_channels
        self.decoder_config = {
            "feat_in": filters[-1],
            "num_classes": self.num_labels,
            "emb_sizes": emb_sizes,
            "pool_mode": pool_mode,
            "angular": self.angular, 
            "attention_channels": attention_channels,
            "init_mode": init_mode, 
        }

        # Loss function configuration
        self.objective = objective
        if objective in ['additive_angular_margin', 'additive_margin']:
            self.objective_config = {
                "scale": angular_scale, 
                "margin": angular_margin, 
            }
        elif objective == 'cross_entropy':
            self.objective_config = {
                "label_smoothing": label_smoothing, 
            }