File size: 7,158 Bytes
99269d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import math

import torch.nn as nn
import torch.nn.functional as F


class Conv1d(nn.Module):
    """This function implements 1d convolution.

    Arguments
    ---------
    out_channels : int
        It is the number of output channels.
    kernel_size : int
        Kernel size of the convolutional filters.
    input_shape : tuple
        The shape of the input. Alternatively use ``in_channels``.
    in_channels : int
        The number of input channels. Alternatively use ``input_shape``.
    stride : int
        Stride factor of the convolutional filters. When the stride factor > 1,
        a decimation in time is performed.
    dilation : int
        Dilation factor of the convolutional filters.
    padding : str
        (same, valid, causal). If "valid", no padding is performed.
        If "same" and stride is 1, output shape is the same as the input shape.
        "causal" results in causal (dilated) convolutions.
    groups : int
        Number of blocked connections from input channels to output channels.
    bias : bool
        Whether to add a bias term to convolution operation.
    padding_mode : str
        This flag specifies the type of padding. See torch.nn documentation
        for more information.
    skip_transpose : bool
        If False, uses batch x time x channel convention of speechbrain.
        If True, uses batch x channel x time convention.
    weight_norm : bool
        If True, use weight normalization,
        to be removed with self.remove_weight_norm() at inference
    conv_init : str
        Weight initialization for the convolution network
    default_padding: str or int
        This sets the default padding mode that will be used by the pytorch Conv1d backend.

    Example
    -------
    >>> inp_tensor = torch.rand([10, 40, 16])
    >>> cnn_1d = Conv1d(
    ...     input_shape=inp_tensor.shape, out_channels=8, kernel_size=5
    ... )
    >>> out_tensor = cnn_1d(inp_tensor)
    >>> out_tensor.shape
    torch.Size([10, 40, 8])
    """

    def __init__(
        self,
        out_channels,
        kernel_size,
        input_shape=None,
        in_channels=None,
        stride=1,
        dilation=1,
        padding="same",
        groups=1,
        bias=True,
        padding_mode="reflect",
        skip_transpose=False,
        weight_norm=False,
        conv_init=None,
        default_padding=0,
    ):
        super().__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.dilation = dilation
        self.padding = padding
        self.padding_mode = padding_mode
        self.unsqueeze = False
        self.skip_transpose = skip_transpose

        if input_shape is None and in_channels is None:
            raise ValueError("Must provide one of input_shape or in_channels")

        if in_channels is None:
            in_channels = self._check_input_shape(input_shape)

        self.in_channels = in_channels

        self.conv = nn.Conv1d(
            in_channels,
            out_channels,
            self.kernel_size,
            stride=self.stride,
            dilation=self.dilation,
            padding=default_padding,
            groups=groups,
            bias=bias,
        )

        if conv_init == "kaiming":
            nn.init.kaiming_normal_(self.conv.weight)
        elif conv_init == "zero":
            nn.init.zeros_(self.conv.weight)
        elif conv_init == "normal":
            nn.init.normal_(self.conv.weight, std=1e-6)

        if weight_norm:
            self.conv = nn.utils.weight_norm(self.conv)

    def forward(self, x, *args, **kwargs):
        """Returns the output of the convolution.

        Arguments
        ---------
        x : torch.Tensor (batch, time, channel)
            input to convolve. 2d or 4d tensors are expected.

        Returns
        -------
        wx : torch.Tensor
            The convolved outputs.
        """
        if not self.skip_transpose:
            x = x.transpose(1, -1)

        if self.unsqueeze:
            x = x.unsqueeze(1)

        if self.padding == "same":
            x = self._manage_padding(
                x, self.kernel_size, self.dilation, self.stride
            )

        elif self.padding == "causal":
            num_pad = (self.kernel_size - 1) * self.dilation
            x = F.pad(x, (num_pad, 0))

        elif self.padding == "valid":
            pass

        else:
            raise ValueError(
                "Padding must be 'same', 'valid' or 'causal'. Got "
                + self.padding
            )

        wx = self.conv(x)

        if self.unsqueeze:
            wx = wx.squeeze(1)

        if not self.skip_transpose:
            wx = wx.transpose(1, -1)

        return wx

    def _manage_padding(self, x, kernel_size: int, dilation: int, stride: int):
        """This function performs zero-padding on the time axis
        such that their lengths is unchanged after the convolution.

        Arguments
        ---------
        x : torch.Tensor
            Input tensor.
        kernel_size : int
            Size of kernel.
        dilation : int
            Dilation used.
        stride : int
            Stride.

        Returns
        -------
        x : torch.Tensor
            The padded outputs.
        """

        # Detecting input shape
        L_in = self.in_channels

        # Time padding
        padding = get_padding_elem(L_in, stride, kernel_size, dilation)

        # Applying padding
        x = F.pad(x, padding, mode=self.padding_mode)

        return x

    def _check_input_shape(self, shape):
        """Checks the input shape and returns the number of input channels."""

        if len(shape) == 2:
            self.unsqueeze = True
            in_channels = 1
        elif self.skip_transpose:
            in_channels = shape[1]
        elif len(shape) == 3:
            in_channels = shape[2]
        else:
            raise ValueError(
                "conv1d expects 2d, 3d inputs. Got " + str(len(shape))
            )

        # Kernel size must be odd
        if not self.padding == "valid" and self.kernel_size % 2 == 0:
            raise ValueError(
                "The field kernel size must be an odd number. Got %s."
                % (self.kernel_size)
            )

        return in_channels

    def remove_weight_norm(self):
        """Removes weight normalization at inference if used during training."""
        self.conv = nn.utils.remove_weight_norm(self.conv)


def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int):
    """This function computes the number of elements to add for zero-padding.

    Arguments
    ---------
    L_in : int
    stride: int
    kernel_size : int
    dilation : int

    Returns
    -------
    padding : int
        The size of the padding to be added
    """
    if stride > 1:
        padding = [math.floor(kernel_size / 2), math.floor(kernel_size / 2)]

    else:
        L_out = (
            math.floor((L_in - dilation * (kernel_size - 1) - 1) / stride) + 1
        )
        padding = [
            math.floor((L_in - L_out) / 2),
            math.floor((L_in - L_out) / 2),
        ]
    return padding