--- library_name: transformers tags: - audio-classification - generated_from_trainer datasets: - voxceleb metrics: - accuracy model-index: - name: ce-len3-bs256-lr1e-3 results: - task: name: Audio Classification type: audio-classification dataset: name: confit/voxceleb type: voxceleb config: verification split: train args: verification metrics: - name: Accuracy type: accuracy value: 0.9410023545240498 --- # ce-len3-bs256-lr1e-3 This model is a fine-tuned version of [](https://huggingface.co/) on the confit/voxceleb dataset. It achieves the following results on the evaluation set: - Loss: 0.2946 - Accuracy: 0.9410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 256 - eval_batch_size: 1 - seed: 914 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.6728 | 1.0 | 523 | 4.3456 | 0.1504 | | 3.224 | 2.0 | 1046 | 2.2589 | 0.5141 | | 2.3964 | 3.0 | 1569 | 1.4663 | 0.6836 | | 1.8474 | 4.0 | 2092 | 0.9548 | 0.7927 | | 1.5275 | 5.0 | 2615 | 0.6698 | 0.8571 | | 1.248 | 6.0 | 3138 | 0.5270 | 0.8899 | | 1.0991 | 7.0 | 3661 | 0.4500 | 0.9037 | | 0.9221 | 8.0 | 4184 | 0.3572 | 0.9267 | | 0.7997 | 9.0 | 4707 | 0.3138 | 0.9353 | | 0.7603 | 10.0 | 5230 | 0.2946 | 0.9410 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.0.0+cu117 - Datasets 3.2.0 - Tokenizers 0.21.0