File size: 4,846 Bytes
fe92aea efe658b fe92aea efe658b fe92aea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-task1-v2-template_small_notypes-deepseek-coder-1.3b-base-ddp-8lr-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lemexp-task1-v2-template_small_notypes-deepseek-coder-1.3b-base-ddp-8lr-v2
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1620
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:-----:|:---------------:|
| 0.4455 | 0.2002 | 721 | 0.3234 |
| 0.3298 | 0.4003 | 1442 | 0.2983 |
| 0.2882 | 0.6005 | 2163 | 0.2751 |
| 0.279 | 0.8007 | 2884 | 0.2731 |
| 0.2666 | 1.0008 | 3605 | 0.2549 |
| 0.2514 | 1.2010 | 4326 | 0.2510 |
| 0.2473 | 1.4012 | 5047 | 0.2483 |
| 0.2414 | 1.6013 | 5768 | 0.2416 |
| 0.2392 | 1.8015 | 6489 | 0.2338 |
| 0.2344 | 2.0017 | 7210 | 0.2286 |
| 0.2249 | 2.2018 | 7931 | 0.2262 |
| 0.224 | 2.4020 | 8652 | 0.2282 |
| 0.2187 | 2.6022 | 9373 | 0.2221 |
| 0.2177 | 2.8023 | 10094 | 0.2160 |
| 0.2143 | 3.0025 | 10815 | 0.2136 |
| 0.2044 | 3.2027 | 11536 | 0.2131 |
| 0.2015 | 3.4028 | 12257 | 0.2073 |
| 0.2011 | 3.6030 | 12978 | 0.2110 |
| 0.1995 | 3.8032 | 13699 | 0.2024 |
| 0.1987 | 4.0033 | 14420 | 0.2046 |
| 0.187 | 4.2035 | 15141 | 0.2017 |
| 0.1858 | 4.4037 | 15862 | 0.1998 |
| 0.1859 | 4.6038 | 16583 | 0.1967 |
| 0.1859 | 4.8040 | 17304 | 0.1975 |
| 0.1851 | 5.0042 | 18025 | 0.1986 |
| 0.1708 | 5.2043 | 18746 | 0.1932 |
| 0.1723 | 5.4045 | 19467 | 0.1874 |
| 0.1708 | 5.6047 | 20188 | 0.1921 |
| 0.1727 | 5.8048 | 20909 | 0.1852 |
| 0.1709 | 6.0050 | 21630 | 0.1836 |
| 0.1594 | 6.2052 | 22351 | 0.1884 |
| 0.1589 | 6.4053 | 23072 | 0.1809 |
| 0.1576 | 6.6055 | 23793 | 0.1775 |
| 0.1585 | 6.8057 | 24514 | 0.1792 |
| 0.1558 | 7.0058 | 25235 | 0.1747 |
| 0.1488 | 7.2060 | 25956 | 0.1727 |
| 0.1464 | 7.4062 | 26677 | 0.1730 |
| 0.1451 | 7.6063 | 27398 | 0.1713 |
| 0.1432 | 7.8065 | 28119 | 0.1728 |
| 0.1431 | 8.0067 | 28840 | 0.1742 |
| 0.1307 | 8.2068 | 29561 | 0.1686 |
| 0.1315 | 8.4070 | 30282 | 0.1660 |
| 0.1308 | 8.6072 | 31003 | 0.1652 |
| 0.1308 | 8.8073 | 31724 | 0.1646 |
| 0.1305 | 9.0075 | 32445 | 0.1673 |
| 0.117 | 9.2077 | 33166 | 0.1676 |
| 0.1163 | 9.4078 | 33887 | 0.1640 |
| 0.1179 | 9.6080 | 34608 | 0.1595 |
| 0.1167 | 9.8082 | 35329 | 0.1601 |
| 0.1175 | 10.0083 | 36050 | 0.1644 |
| 0.1032 | 10.2085 | 36771 | 0.1647 |
| 0.103 | 10.4087 | 37492 | 0.1598 |
| 0.1039 | 10.6088 | 38213 | 0.1613 |
| 0.1042 | 10.8090 | 38934 | 0.1584 |
| 0.1022 | 11.0092 | 39655 | 0.1607 |
| 0.0948 | 11.2093 | 40376 | 0.1620 |
| 0.0925 | 11.4095 | 41097 | 0.1628 |
| 0.093 | 11.6097 | 41818 | 0.1623 |
| 0.0926 | 11.8098 | 42539 | 0.1620 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |