yalhessi commited on
Commit
74215bc
·
verified ·
1 Parent(s): dbea61d

Training in progress, epoch 8, checkpoint

Browse files
checkpoint-28792/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-coder-1.3b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-28792/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-1.3b-base",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "v_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
checkpoint-28792/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2abbca264085615b1a7580589772e59905aaa4de046c0c4a8b781ae51c775602
3
+ size 268636736
checkpoint-28792/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3257ead6b33001fe4cf170b34d88b28c3918a36860e5752e5bf537ba09acb9b8
3
+ size 12663802
checkpoint-28792/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7f69fe25b783f9b05ed62e73ca314b0ec2ef1261b663ab915dcb5df0b69fda9
3
+ size 15984
checkpoint-28792/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d00c0dbb10fb6cb72ac590931c4a7f02a8fe851de00ad45bc0965359580fa06
3
+ size 15984
checkpoint-28792/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db88d5d51af5005c89f6ada7df19eb6aae7be259b074be57f882056ebc2a59ac
3
+ size 15984
checkpoint-28792/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67a67e1963abfc031c6ca0b2681c2e52f8b6c2f3564f89e35b6ef8f4a8f84745
3
+ size 15984
checkpoint-28792/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ccb4a8a97d2af7752effce75a94cc35a5d0133661acc44ef84556c6d9933cb2
3
+ size 15984
checkpoint-28792/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fccf919a206d607c5aba2512ec147516ee9c141a63b572b7a7a7dea763d4b62
3
+ size 15984
checkpoint-28792/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ba1e8fd21716014874232ce68de10e9b4de0fa670919cc6809fc696eb3290a1
3
+ size 15984
checkpoint-28792/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd1216d86a76182b960e9c89d1f4079e8446af7c8a7a22b6282a5c3b8aca6dcd
3
+ size 15984
checkpoint-28792/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1aab6a0923ad10c830c16b0c1bde8661adea5939417e84dbddd74617e2a0ee42
3
+ size 1064
checkpoint-28792/trainer_state.json ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 8.0,
5
+ "eval_steps": 1440,
6
+ "global_step": 28792,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13892747985551543,
13
+ "grad_norm": 0.9003118872642517,
14
+ "learning_rate": 0.000795387607668797,
15
+ "loss": 0.4296,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.27785495971103086,
20
+ "grad_norm": 2.5679404735565186,
21
+ "learning_rate": 0.0007907566916736131,
22
+ "loss": 0.3243,
23
+ "step": 1000
24
+ },
25
+ {
26
+ "epoch": 0.4001111419838844,
27
+ "eval_loss": 0.2947143018245697,
28
+ "eval_runtime": 5.7176,
29
+ "eval_samples_per_second": 87.449,
30
+ "eval_steps_per_second": 5.597,
31
+ "step": 1440
32
+ },
33
+ {
34
+ "epoch": 0.41678243956654626,
35
+ "grad_norm": 0.6454382538795471,
36
+ "learning_rate": 0.0007861257756784293,
37
+ "loss": 0.2985,
38
+ "step": 1500
39
+ },
40
+ {
41
+ "epoch": 0.5557099194220617,
42
+ "grad_norm": 0.6851354837417603,
43
+ "learning_rate": 0.0007815041215152357,
44
+ "loss": 0.2829,
45
+ "step": 2000
46
+ },
47
+ {
48
+ "epoch": 0.6946373992775771,
49
+ "grad_norm": 0.7469644546508789,
50
+ "learning_rate": 0.0007768732055200519,
51
+ "loss": 0.2737,
52
+ "step": 2500
53
+ },
54
+ {
55
+ "epoch": 0.8002222839677688,
56
+ "eval_loss": 0.2755357623100281,
57
+ "eval_runtime": 5.6548,
58
+ "eval_samples_per_second": 88.421,
59
+ "eval_steps_per_second": 5.659,
60
+ "step": 2880
61
+ },
62
+ {
63
+ "epoch": 0.8335648791330925,
64
+ "grad_norm": 0.6683129072189331,
65
+ "learning_rate": 0.0007722422895248681,
66
+ "loss": 0.2653,
67
+ "step": 3000
68
+ },
69
+ {
70
+ "epoch": 0.972492358988608,
71
+ "grad_norm": 0.7536308169364929,
72
+ "learning_rate": 0.0007676113735296843,
73
+ "loss": 0.2628,
74
+ "step": 3500
75
+ },
76
+ {
77
+ "epoch": 1.1114198388441234,
78
+ "grad_norm": 0.6173604726791382,
79
+ "learning_rate": 0.0007629804575345004,
80
+ "loss": 0.2463,
81
+ "step": 4000
82
+ },
83
+ {
84
+ "epoch": 1.2003334259516532,
85
+ "eval_loss": 0.2620045840740204,
86
+ "eval_runtime": 5.6897,
87
+ "eval_samples_per_second": 87.877,
88
+ "eval_steps_per_second": 5.624,
89
+ "step": 4320
90
+ },
91
+ {
92
+ "epoch": 1.2503473186996388,
93
+ "grad_norm": 0.9441823363304138,
94
+ "learning_rate": 0.0007583495415393165,
95
+ "loss": 0.2476,
96
+ "step": 4500
97
+ },
98
+ {
99
+ "epoch": 1.3892747985551543,
100
+ "grad_norm": 1.179303526878357,
101
+ "learning_rate": 0.0007537186255441327,
102
+ "loss": 0.2448,
103
+ "step": 5000
104
+ },
105
+ {
106
+ "epoch": 1.5282022784106695,
107
+ "grad_norm": 0.9045144319534302,
108
+ "learning_rate": 0.0007490877095489488,
109
+ "loss": 0.2389,
110
+ "step": 5500
111
+ },
112
+ {
113
+ "epoch": 1.6004445679355377,
114
+ "eval_loss": 0.25695353746414185,
115
+ "eval_runtime": 5.6542,
116
+ "eval_samples_per_second": 88.43,
117
+ "eval_steps_per_second": 5.66,
118
+ "step": 5760
119
+ },
120
+ {
121
+ "epoch": 1.667129758266185,
122
+ "grad_norm": 0.6623045206069946,
123
+ "learning_rate": 0.0007444660553857554,
124
+ "loss": 0.2409,
125
+ "step": 6000
126
+ },
127
+ {
128
+ "epoch": 1.8060572381217006,
129
+ "grad_norm": 0.6902622580528259,
130
+ "learning_rate": 0.0007398351393905715,
131
+ "loss": 0.234,
132
+ "step": 6500
133
+ },
134
+ {
135
+ "epoch": 1.9449847179772157,
136
+ "grad_norm": 0.7465945482254028,
137
+ "learning_rate": 0.0007352042233953876,
138
+ "loss": 0.2342,
139
+ "step": 7000
140
+ },
141
+ {
142
+ "epoch": 2.000555709919422,
143
+ "eval_loss": 0.25181135535240173,
144
+ "eval_runtime": 5.6993,
145
+ "eval_samples_per_second": 87.731,
146
+ "eval_steps_per_second": 5.615,
147
+ "step": 7200
148
+ },
149
+ {
150
+ "epoch": 2.0839121978327313,
151
+ "grad_norm": 0.7666770219802856,
152
+ "learning_rate": 0.0007305825692321942,
153
+ "loss": 0.226,
154
+ "step": 7500
155
+ },
156
+ {
157
+ "epoch": 2.222839677688247,
158
+ "grad_norm": 0.6436336636543274,
159
+ "learning_rate": 0.0007259516532370103,
160
+ "loss": 0.2247,
161
+ "step": 8000
162
+ },
163
+ {
164
+ "epoch": 2.361767157543762,
165
+ "grad_norm": 0.6064488291740417,
166
+ "learning_rate": 0.0007213207372418264,
167
+ "loss": 0.2237,
168
+ "step": 8500
169
+ },
170
+ {
171
+ "epoch": 2.4006668519033063,
172
+ "eval_loss": 0.24924051761627197,
173
+ "eval_runtime": 5.9651,
174
+ "eval_samples_per_second": 83.821,
175
+ "eval_steps_per_second": 5.365,
176
+ "step": 8640
177
+ },
178
+ {
179
+ "epoch": 2.5006946373992776,
180
+ "grad_norm": 1.0091792345046997,
181
+ "learning_rate": 0.0007166898212466426,
182
+ "loss": 0.2203,
183
+ "step": 9000
184
+ },
185
+ {
186
+ "epoch": 2.639622117254793,
187
+ "grad_norm": 0.8089786767959595,
188
+ "learning_rate": 0.0007120589052514588,
189
+ "loss": 0.2196,
190
+ "step": 9500
191
+ },
192
+ {
193
+ "epoch": 2.7785495971103087,
194
+ "grad_norm": 0.5441291928291321,
195
+ "learning_rate": 0.0007074372510882653,
196
+ "loss": 0.2216,
197
+ "step": 10000
198
+ },
199
+ {
200
+ "epoch": 2.800777993887191,
201
+ "eval_loss": 0.2379860281944275,
202
+ "eval_runtime": 5.6823,
203
+ "eval_samples_per_second": 87.992,
204
+ "eval_steps_per_second": 5.632,
205
+ "step": 10080
206
+ },
207
+ {
208
+ "epoch": 2.917477076965824,
209
+ "grad_norm": 0.5629907250404358,
210
+ "learning_rate": 0.0007028063350930814,
211
+ "loss": 0.2209,
212
+ "step": 10500
213
+ },
214
+ {
215
+ "epoch": 3.0564045568213394,
216
+ "grad_norm": 0.7793105840682983,
217
+ "learning_rate": 0.0006981754190978975,
218
+ "loss": 0.2153,
219
+ "step": 11000
220
+ },
221
+ {
222
+ "epoch": 3.1953320366768545,
223
+ "grad_norm": 0.5668399333953857,
224
+ "learning_rate": 0.0006935445031027137,
225
+ "loss": 0.2104,
226
+ "step": 11500
227
+ },
228
+ {
229
+ "epoch": 3.2008891358710754,
230
+ "eval_loss": 0.23175135254859924,
231
+ "eval_runtime": 5.6868,
232
+ "eval_samples_per_second": 87.922,
233
+ "eval_steps_per_second": 5.627,
234
+ "step": 11520
235
+ },
236
+ {
237
+ "epoch": 3.33425951653237,
238
+ "grad_norm": 0.8093000650405884,
239
+ "learning_rate": 0.0006889228489395203,
240
+ "loss": 0.2136,
241
+ "step": 12000
242
+ },
243
+ {
244
+ "epoch": 3.4731869963878856,
245
+ "grad_norm": 0.9104741215705872,
246
+ "learning_rate": 0.0006842919329443364,
247
+ "loss": 0.2076,
248
+ "step": 12500
249
+ },
250
+ {
251
+ "epoch": 3.6010002778549595,
252
+ "eval_loss": 0.22807475924491882,
253
+ "eval_runtime": 5.7081,
254
+ "eval_samples_per_second": 87.595,
255
+ "eval_steps_per_second": 5.606,
256
+ "step": 12960
257
+ },
258
+ {
259
+ "epoch": 3.612114476243401,
260
+ "grad_norm": 0.688875675201416,
261
+ "learning_rate": 0.0006796610169491525,
262
+ "loss": 0.2109,
263
+ "step": 13000
264
+ },
265
+ {
266
+ "epoch": 3.7510419560989163,
267
+ "grad_norm": 0.985016405582428,
268
+ "learning_rate": 0.0006750301009539687,
269
+ "loss": 0.209,
270
+ "step": 13500
271
+ },
272
+ {
273
+ "epoch": 3.889969435954432,
274
+ "grad_norm": 0.792914628982544,
275
+ "learning_rate": 0.0006703991849587848,
276
+ "loss": 0.2087,
277
+ "step": 14000
278
+ },
279
+ {
280
+ "epoch": 4.001111419838844,
281
+ "eval_loss": 0.2299247533082962,
282
+ "eval_runtime": 5.9644,
283
+ "eval_samples_per_second": 83.831,
284
+ "eval_steps_per_second": 5.365,
285
+ "step": 14400
286
+ },
287
+ {
288
+ "epoch": 4.0288969158099475,
289
+ "grad_norm": 0.8050146698951721,
290
+ "learning_rate": 0.000665768268963601,
291
+ "loss": 0.2043,
292
+ "step": 14500
293
+ },
294
+ {
295
+ "epoch": 4.167824395665463,
296
+ "grad_norm": 0.6686243414878845,
297
+ "learning_rate": 0.0006611373529684172,
298
+ "loss": 0.1997,
299
+ "step": 15000
300
+ },
301
+ {
302
+ "epoch": 4.306751875520978,
303
+ "grad_norm": 0.5832377076148987,
304
+ "learning_rate": 0.0006565064369732334,
305
+ "loss": 0.2011,
306
+ "step": 15500
307
+ },
308
+ {
309
+ "epoch": 4.4012225618227285,
310
+ "eval_loss": 0.22105582058429718,
311
+ "eval_runtime": 5.6811,
312
+ "eval_samples_per_second": 88.011,
313
+ "eval_steps_per_second": 5.633,
314
+ "step": 15840
315
+ },
316
+ {
317
+ "epoch": 4.445679355376494,
318
+ "grad_norm": 0.5768308639526367,
319
+ "learning_rate": 0.0006518847828100398,
320
+ "loss": 0.2029,
321
+ "step": 16000
322
+ },
323
+ {
324
+ "epoch": 4.584606835232009,
325
+ "grad_norm": 0.7500970959663391,
326
+ "learning_rate": 0.000647253866814856,
327
+ "loss": 0.1985,
328
+ "step": 16500
329
+ },
330
+ {
331
+ "epoch": 4.723534315087524,
332
+ "grad_norm": 0.7904524207115173,
333
+ "learning_rate": 0.0006426322126516625,
334
+ "loss": 0.199,
335
+ "step": 17000
336
+ },
337
+ {
338
+ "epoch": 4.801333703806613,
339
+ "eval_loss": 0.2192094475030899,
340
+ "eval_runtime": 5.6808,
341
+ "eval_samples_per_second": 88.016,
342
+ "eval_steps_per_second": 5.633,
343
+ "step": 17280
344
+ },
345
+ {
346
+ "epoch": 4.86246179494304,
347
+ "grad_norm": 0.539150059223175,
348
+ "learning_rate": 0.0006380012966564787,
349
+ "loss": 0.2009,
350
+ "step": 17500
351
+ },
352
+ {
353
+ "epoch": 5.001389274798555,
354
+ "grad_norm": 0.8565651178359985,
355
+ "learning_rate": 0.0006333703806612948,
356
+ "loss": 0.1971,
357
+ "step": 18000
358
+ },
359
+ {
360
+ "epoch": 5.14031675465407,
361
+ "grad_norm": 0.7713454365730286,
362
+ "learning_rate": 0.0006287394646661109,
363
+ "loss": 0.1893,
364
+ "step": 18500
365
+ },
366
+ {
367
+ "epoch": 5.201444845790498,
368
+ "eval_loss": 0.21168488264083862,
369
+ "eval_runtime": 5.6835,
370
+ "eval_samples_per_second": 87.974,
371
+ "eval_steps_per_second": 5.63,
372
+ "step": 18720
373
+ },
374
+ {
375
+ "epoch": 5.279244234509586,
376
+ "grad_norm": 0.6991382241249084,
377
+ "learning_rate": 0.0006241085486709271,
378
+ "loss": 0.1893,
379
+ "step": 19000
380
+ },
381
+ {
382
+ "epoch": 5.418171714365101,
383
+ "grad_norm": 0.8312591314315796,
384
+ "learning_rate": 0.0006194776326757433,
385
+ "loss": 0.1922,
386
+ "step": 19500
387
+ },
388
+ {
389
+ "epoch": 5.5570991942206165,
390
+ "grad_norm": 0.5211935043334961,
391
+ "learning_rate": 0.0006148467166805595,
392
+ "loss": 0.1935,
393
+ "step": 20000
394
+ },
395
+ {
396
+ "epoch": 5.601555987774382,
397
+ "eval_loss": 0.21850116550922394,
398
+ "eval_runtime": 5.755,
399
+ "eval_samples_per_second": 86.881,
400
+ "eval_steps_per_second": 5.56,
401
+ "step": 20160
402
+ },
403
+ {
404
+ "epoch": 5.6960266740761325,
405
+ "grad_norm": 0.6599379777908325,
406
+ "learning_rate": 0.000610225062517366,
407
+ "loss": 0.1926,
408
+ "step": 20500
409
+ },
410
+ {
411
+ "epoch": 5.834954153931648,
412
+ "grad_norm": 0.5970427393913269,
413
+ "learning_rate": 0.0006055941465221821,
414
+ "loss": 0.1909,
415
+ "step": 21000
416
+ },
417
+ {
418
+ "epoch": 5.973881633787163,
419
+ "grad_norm": 1.023311734199524,
420
+ "learning_rate": 0.0006009632305269982,
421
+ "loss": 0.1895,
422
+ "step": 21500
423
+ },
424
+ {
425
+ "epoch": 6.001667129758266,
426
+ "eval_loss": 0.207980215549469,
427
+ "eval_runtime": 5.7482,
428
+ "eval_samples_per_second": 86.984,
429
+ "eval_steps_per_second": 5.567,
430
+ "step": 21600
431
+ },
432
+ {
433
+ "epoch": 6.112809113642679,
434
+ "grad_norm": 0.91774582862854,
435
+ "learning_rate": 0.0005963323145318144,
436
+ "loss": 0.1816,
437
+ "step": 22000
438
+ },
439
+ {
440
+ "epoch": 6.251736593498194,
441
+ "grad_norm": 1.0004245042800903,
442
+ "learning_rate": 0.0005917013985366306,
443
+ "loss": 0.1851,
444
+ "step": 22500
445
+ },
446
+ {
447
+ "epoch": 6.390664073353709,
448
+ "grad_norm": 0.662783145904541,
449
+ "learning_rate": 0.0005870704825414468,
450
+ "loss": 0.1841,
451
+ "step": 23000
452
+ },
453
+ {
454
+ "epoch": 6.401778271742151,
455
+ "eval_loss": 0.20145055651664734,
456
+ "eval_runtime": 5.7129,
457
+ "eval_samples_per_second": 87.521,
458
+ "eval_steps_per_second": 5.601,
459
+ "step": 23040
460
+ },
461
+ {
462
+ "epoch": 6.529591553209225,
463
+ "grad_norm": 0.7809537053108215,
464
+ "learning_rate": 0.0005824395665462628,
465
+ "loss": 0.1818,
466
+ "step": 23500
467
+ },
468
+ {
469
+ "epoch": 6.66851903306474,
470
+ "grad_norm": 0.7120875120162964,
471
+ "learning_rate": 0.000577808650551079,
472
+ "loss": 0.184,
473
+ "step": 24000
474
+ },
475
+ {
476
+ "epoch": 6.801889413726035,
477
+ "eval_loss": 0.20286568999290466,
478
+ "eval_runtime": 5.6944,
479
+ "eval_samples_per_second": 87.805,
480
+ "eval_steps_per_second": 5.62,
481
+ "step": 24480
482
+ },
483
+ {
484
+ "epoch": 6.807446512920255,
485
+ "grad_norm": 0.6878994107246399,
486
+ "learning_rate": 0.0005731869963878856,
487
+ "loss": 0.1837,
488
+ "step": 24500
489
+ },
490
+ {
491
+ "epoch": 6.946373992775771,
492
+ "grad_norm": 1.3410155773162842,
493
+ "learning_rate": 0.0005685560803927017,
494
+ "loss": 0.181,
495
+ "step": 25000
496
+ },
497
+ {
498
+ "epoch": 7.085301472631286,
499
+ "grad_norm": 0.7791838049888611,
500
+ "learning_rate": 0.0005639344262295083,
501
+ "loss": 0.1755,
502
+ "step": 25500
503
+ },
504
+ {
505
+ "epoch": 7.20200055570992,
506
+ "eval_loss": 0.2010478526353836,
507
+ "eval_runtime": 5.7186,
508
+ "eval_samples_per_second": 87.434,
509
+ "eval_steps_per_second": 5.596,
510
+ "step": 25920
511
+ },
512
+ {
513
+ "epoch": 7.2242289524868015,
514
+ "grad_norm": 1.0793170928955078,
515
+ "learning_rate": 0.0005593035102343244,
516
+ "loss": 0.1728,
517
+ "step": 26000
518
+ },
519
+ {
520
+ "epoch": 7.3631564323423175,
521
+ "grad_norm": 0.901263415813446,
522
+ "learning_rate": 0.0005546725942391405,
523
+ "loss": 0.1761,
524
+ "step": 26500
525
+ },
526
+ {
527
+ "epoch": 7.502083912197833,
528
+ "grad_norm": 0.5980243682861328,
529
+ "learning_rate": 0.0005500416782439567,
530
+ "loss": 0.1762,
531
+ "step": 27000
532
+ },
533
+ {
534
+ "epoch": 7.602111697693804,
535
+ "eval_loss": 0.2034424990415573,
536
+ "eval_runtime": 5.7241,
537
+ "eval_samples_per_second": 87.35,
538
+ "eval_steps_per_second": 5.59,
539
+ "step": 27360
540
+ },
541
+ {
542
+ "epoch": 7.641011392053348,
543
+ "grad_norm": 0.7678053975105286,
544
+ "learning_rate": 0.0005454200240807632,
545
+ "loss": 0.1754,
546
+ "step": 27500
547
+ },
548
+ {
549
+ "epoch": 7.779938871908864,
550
+ "grad_norm": 0.626030683517456,
551
+ "learning_rate": 0.0005407891080855794,
552
+ "loss": 0.1741,
553
+ "step": 28000
554
+ },
555
+ {
556
+ "epoch": 7.918866351764379,
557
+ "grad_norm": 0.6907975673675537,
558
+ "learning_rate": 0.0005361581920903956,
559
+ "loss": 0.1775,
560
+ "step": 28500
561
+ }
562
+ ],
563
+ "logging_steps": 500,
564
+ "max_steps": 86376,
565
+ "num_input_tokens_seen": 0,
566
+ "num_train_epochs": 24,
567
+ "save_steps": 500,
568
+ "stateful_callbacks": {
569
+ "TrainerControl": {
570
+ "args": {
571
+ "should_epoch_stop": false,
572
+ "should_evaluate": false,
573
+ "should_log": false,
574
+ "should_save": true,
575
+ "should_training_stop": false
576
+ },
577
+ "attributes": {}
578
+ }
579
+ },
580
+ "total_flos": 1.4387891381982986e+18,
581
+ "train_batch_size": 2,
582
+ "trial_name": null,
583
+ "trial_params": null
584
+ }
checkpoint-28792/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20f04554acd1689dfcf765ddfc83593c217e6ad8c0837409b2e0544a3f5759a0
3
+ size 5496