yalhessi commited on
Commit
116553c
·
verified ·
1 Parent(s): ba21e19

Training in progress, epoch 8, checkpoint

Browse files
checkpoint-28792/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-coder-1.3b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-28792/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-1.3b-base",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "v_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
checkpoint-28792/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f10caf72a8e0a570f06ed75b02641157214f78cb97d46665b5475fa9b4c93365
3
+ size 268636736
checkpoint-28792/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfc7f9f229a5f43d6767e3819411600554a4b85de02feb4e321f1135bb1c968f
3
+ size 12663802
checkpoint-28792/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67aaaa03471b4a2bf0e601c8e8232326d452e63bae4ba362387e8e06abc900c9
3
+ size 15984
checkpoint-28792/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e01cffcb0eeb764c05ca9819cb722eac5f4d6461a3c28e2818aec67cc6c55cb2
3
+ size 15984
checkpoint-28792/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7e0d9763378031c9809f15925e99694e92d2857b41b495e7133b259fd5aa457
3
+ size 15984
checkpoint-28792/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f1db97f9ddd527f3c71bb54225c3e01d94ff5eebc9da5eef28c785dd34a0c00
3
+ size 15984
checkpoint-28792/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddd96e8d45b14c801deef2ec52991721e99ad9e8527be5e7a59a87a3ef97a71e
3
+ size 15984
checkpoint-28792/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edd4bc8d7d2bd81bd2fe4457fb88fd92c72e5ca15b2844f710a7aa86c5197d01
3
+ size 15984
checkpoint-28792/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:385f80454946e8c833aceb16c9ad0e3c05695753a7ddb07644de582e3d96b2cb
3
+ size 15984
checkpoint-28792/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1798be3620ebe6d90ab3c7dc0d9fe8b771d42635d613d6dfba68024cc38be27b
3
+ size 15984
checkpoint-28792/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c28087fc71c3514f86995cc9107098b1c86c533b64fbcf8b6dc4cfa6c100d97
3
+ size 1064
checkpoint-28792/trainer_state.json ADDED
@@ -0,0 +1,744 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 8.0,
5
+ "eval_steps": 720,
6
+ "global_step": 28792,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13892747985551543,
13
+ "grad_norm": 0.889398455619812,
14
+ "learning_rate": 0.0007907752153375939,
15
+ "loss": 0.3895,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.2000555709919422,
20
+ "eval_loss": 0.2990996241569519,
21
+ "eval_runtime": 6.0564,
22
+ "eval_samples_per_second": 82.558,
23
+ "eval_steps_per_second": 5.284,
24
+ "step": 720
25
+ },
26
+ {
27
+ "epoch": 0.27785495971103086,
28
+ "grad_norm": 0.5278475880622864,
29
+ "learning_rate": 0.0007815133833472261,
30
+ "loss": 0.2897,
31
+ "step": 1000
32
+ },
33
+ {
34
+ "epoch": 0.4001111419838844,
35
+ "eval_loss": 0.2636842131614685,
36
+ "eval_runtime": 6.0156,
37
+ "eval_samples_per_second": 83.118,
38
+ "eval_steps_per_second": 5.32,
39
+ "step": 1440
40
+ },
41
+ {
42
+ "epoch": 0.41678243956654626,
43
+ "grad_norm": 1.208860158920288,
44
+ "learning_rate": 0.0007722515513568584,
45
+ "loss": 0.2681,
46
+ "step": 1500
47
+ },
48
+ {
49
+ "epoch": 0.5557099194220617,
50
+ "grad_norm": 0.7001394629478455,
51
+ "learning_rate": 0.0007629897193664907,
52
+ "loss": 0.2536,
53
+ "step": 2000
54
+ },
55
+ {
56
+ "epoch": 0.6001667129758266,
57
+ "eval_loss": 0.25593382120132446,
58
+ "eval_runtime": 6.0644,
59
+ "eval_samples_per_second": 82.449,
60
+ "eval_steps_per_second": 5.277,
61
+ "step": 2160
62
+ },
63
+ {
64
+ "epoch": 0.6946373992775771,
65
+ "grad_norm": 0.7066700458526611,
66
+ "learning_rate": 0.000753727887376123,
67
+ "loss": 0.2453,
68
+ "step": 2500
69
+ },
70
+ {
71
+ "epoch": 0.8002222839677688,
72
+ "eval_loss": 0.24263954162597656,
73
+ "eval_runtime": 6.2582,
74
+ "eval_samples_per_second": 79.896,
75
+ "eval_steps_per_second": 5.113,
76
+ "step": 2880
77
+ },
78
+ {
79
+ "epoch": 0.8335648791330925,
80
+ "grad_norm": 0.8669331073760986,
81
+ "learning_rate": 0.000744484579049736,
82
+ "loss": 0.2378,
83
+ "step": 3000
84
+ },
85
+ {
86
+ "epoch": 0.972492358988608,
87
+ "grad_norm": 0.752050518989563,
88
+ "learning_rate": 0.0007352412707233491,
89
+ "loss": 0.2335,
90
+ "step": 3500
91
+ },
92
+ {
93
+ "epoch": 1.000277854959711,
94
+ "eval_loss": 0.24230095744132996,
95
+ "eval_runtime": 6.2445,
96
+ "eval_samples_per_second": 80.07,
97
+ "eval_steps_per_second": 5.124,
98
+ "step": 3600
99
+ },
100
+ {
101
+ "epoch": 1.1114198388441234,
102
+ "grad_norm": 0.5285800695419312,
103
+ "learning_rate": 0.0007259794387329814,
104
+ "loss": 0.2214,
105
+ "step": 4000
106
+ },
107
+ {
108
+ "epoch": 1.2003334259516532,
109
+ "eval_loss": 0.23442834615707397,
110
+ "eval_runtime": 6.0486,
111
+ "eval_samples_per_second": 82.664,
112
+ "eval_steps_per_second": 5.291,
113
+ "step": 4320
114
+ },
115
+ {
116
+ "epoch": 1.2503473186996388,
117
+ "grad_norm": 0.7171725630760193,
118
+ "learning_rate": 0.0007167176067426138,
119
+ "loss": 0.2204,
120
+ "step": 4500
121
+ },
122
+ {
123
+ "epoch": 1.3892747985551543,
124
+ "grad_norm": 0.6683080792427063,
125
+ "learning_rate": 0.000707455774752246,
126
+ "loss": 0.217,
127
+ "step": 5000
128
+ },
129
+ {
130
+ "epoch": 1.4003889969435954,
131
+ "eval_loss": 0.2214350551366806,
132
+ "eval_runtime": 6.0608,
133
+ "eval_samples_per_second": 82.498,
134
+ "eval_steps_per_second": 5.28,
135
+ "step": 5040
136
+ },
137
+ {
138
+ "epoch": 1.5282022784106695,
139
+ "grad_norm": 0.8774034380912781,
140
+ "learning_rate": 0.0006981939427618783,
141
+ "loss": 0.2154,
142
+ "step": 5500
143
+ },
144
+ {
145
+ "epoch": 1.6004445679355377,
146
+ "eval_loss": 0.2222467064857483,
147
+ "eval_runtime": 6.2569,
148
+ "eval_samples_per_second": 79.912,
149
+ "eval_steps_per_second": 5.114,
150
+ "step": 5760
151
+ },
152
+ {
153
+ "epoch": 1.667129758266185,
154
+ "grad_norm": 0.6040942668914795,
155
+ "learning_rate": 0.0006889506344354914,
156
+ "loss": 0.2133,
157
+ "step": 6000
158
+ },
159
+ {
160
+ "epoch": 1.8005001389274797,
161
+ "eval_loss": 0.2248920053243637,
162
+ "eval_runtime": 6.2381,
163
+ "eval_samples_per_second": 80.153,
164
+ "eval_steps_per_second": 5.13,
165
+ "step": 6480
166
+ },
167
+ {
168
+ "epoch": 1.8060572381217006,
169
+ "grad_norm": 0.8217343688011169,
170
+ "learning_rate": 0.0006796888024451237,
171
+ "loss": 0.2108,
172
+ "step": 6500
173
+ },
174
+ {
175
+ "epoch": 1.9449847179772157,
176
+ "grad_norm": 0.6363208889961243,
177
+ "learning_rate": 0.0006704269704547561,
178
+ "loss": 0.2095,
179
+ "step": 7000
180
+ },
181
+ {
182
+ "epoch": 2.000555709919422,
183
+ "eval_loss": 0.2111140936613083,
184
+ "eval_runtime": 6.4306,
185
+ "eval_samples_per_second": 77.753,
186
+ "eval_steps_per_second": 4.976,
187
+ "step": 7200
188
+ },
189
+ {
190
+ "epoch": 2.0839121978327313,
191
+ "grad_norm": 0.5115044116973877,
192
+ "learning_rate": 0.0006611651384643883,
193
+ "loss": 0.1984,
194
+ "step": 7500
195
+ },
196
+ {
197
+ "epoch": 2.2006112809113643,
198
+ "eval_loss": 0.21921053528785706,
199
+ "eval_runtime": 6.2111,
200
+ "eval_samples_per_second": 80.501,
201
+ "eval_steps_per_second": 5.152,
202
+ "step": 7920
203
+ },
204
+ {
205
+ "epoch": 2.222839677688247,
206
+ "grad_norm": 0.7524166703224182,
207
+ "learning_rate": 0.0006519218301380013,
208
+ "loss": 0.1981,
209
+ "step": 8000
210
+ },
211
+ {
212
+ "epoch": 2.361767157543762,
213
+ "grad_norm": 0.7301591038703918,
214
+ "learning_rate": 0.0006426599981476336,
215
+ "loss": 0.1973,
216
+ "step": 8500
217
+ },
218
+ {
219
+ "epoch": 2.4006668519033063,
220
+ "eval_loss": 0.2109183967113495,
221
+ "eval_runtime": 6.2385,
222
+ "eval_samples_per_second": 80.147,
223
+ "eval_steps_per_second": 5.129,
224
+ "step": 8640
225
+ },
226
+ {
227
+ "epoch": 2.5006946373992776,
228
+ "grad_norm": 0.6623874306678772,
229
+ "learning_rate": 0.000633398166157266,
230
+ "loss": 0.1938,
231
+ "step": 9000
232
+ },
233
+ {
234
+ "epoch": 2.600722422895249,
235
+ "eval_loss": 0.19926229119300842,
236
+ "eval_runtime": 6.2567,
237
+ "eval_samples_per_second": 79.914,
238
+ "eval_steps_per_second": 5.115,
239
+ "step": 9360
240
+ },
241
+ {
242
+ "epoch": 2.639622117254793,
243
+ "grad_norm": 0.5896228551864624,
244
+ "learning_rate": 0.0006241363341668982,
245
+ "loss": 0.1917,
246
+ "step": 9500
247
+ },
248
+ {
249
+ "epoch": 2.7785495971103087,
250
+ "grad_norm": 0.5303069353103638,
251
+ "learning_rate": 0.0006148745021765306,
252
+ "loss": 0.1941,
253
+ "step": 10000
254
+ },
255
+ {
256
+ "epoch": 2.800777993887191,
257
+ "eval_loss": 0.20040422677993774,
258
+ "eval_runtime": 6.445,
259
+ "eval_samples_per_second": 77.58,
260
+ "eval_steps_per_second": 4.965,
261
+ "step": 10080
262
+ },
263
+ {
264
+ "epoch": 2.917477076965824,
265
+ "grad_norm": 0.5772528052330017,
266
+ "learning_rate": 0.0006056126701861628,
267
+ "loss": 0.1962,
268
+ "step": 10500
269
+ },
270
+ {
271
+ "epoch": 3.000833564879133,
272
+ "eval_loss": 0.19769687950611115,
273
+ "eval_runtime": 6.251,
274
+ "eval_samples_per_second": 79.987,
275
+ "eval_steps_per_second": 5.119,
276
+ "step": 10800
277
+ },
278
+ {
279
+ "epoch": 3.0564045568213394,
280
+ "grad_norm": 0.8229184746742249,
281
+ "learning_rate": 0.0005963508381957952,
282
+ "loss": 0.1868,
283
+ "step": 11000
284
+ },
285
+ {
286
+ "epoch": 3.1953320366768545,
287
+ "grad_norm": 0.6219042539596558,
288
+ "learning_rate": 0.0005871075298694081,
289
+ "loss": 0.1813,
290
+ "step": 11500
291
+ },
292
+ {
293
+ "epoch": 3.2008891358710754,
294
+ "eval_loss": 0.20137149095535278,
295
+ "eval_runtime": 6.1829,
296
+ "eval_samples_per_second": 80.868,
297
+ "eval_steps_per_second": 5.176,
298
+ "step": 11520
299
+ },
300
+ {
301
+ "epoch": 3.33425951653237,
302
+ "grad_norm": 0.6010075807571411,
303
+ "learning_rate": 0.0005778456978790405,
304
+ "loss": 0.1822,
305
+ "step": 12000
306
+ },
307
+ {
308
+ "epoch": 3.4009447068630174,
309
+ "eval_loss": 0.20252275466918945,
310
+ "eval_runtime": 6.2359,
311
+ "eval_samples_per_second": 80.181,
312
+ "eval_steps_per_second": 5.132,
313
+ "step": 12240
314
+ },
315
+ {
316
+ "epoch": 3.4731869963878856,
317
+ "grad_norm": 0.6477861404418945,
318
+ "learning_rate": 0.0005685838658886728,
319
+ "loss": 0.1814,
320
+ "step": 12500
321
+ },
322
+ {
323
+ "epoch": 3.6010002778549595,
324
+ "eval_loss": 0.19002339243888855,
325
+ "eval_runtime": 6.0426,
326
+ "eval_samples_per_second": 82.745,
327
+ "eval_steps_per_second": 5.296,
328
+ "step": 12960
329
+ },
330
+ {
331
+ "epoch": 3.612114476243401,
332
+ "grad_norm": 0.6676946878433228,
333
+ "learning_rate": 0.0005593220338983052,
334
+ "loss": 0.1808,
335
+ "step": 13000
336
+ },
337
+ {
338
+ "epoch": 3.7510419560989163,
339
+ "grad_norm": 1.1407862901687622,
340
+ "learning_rate": 0.0005500602019079374,
341
+ "loss": 0.1788,
342
+ "step": 13500
343
+ },
344
+ {
345
+ "epoch": 3.801055848846902,
346
+ "eval_loss": 0.18976138532161713,
347
+ "eval_runtime": 6.3955,
348
+ "eval_samples_per_second": 78.18,
349
+ "eval_steps_per_second": 5.004,
350
+ "step": 13680
351
+ },
352
+ {
353
+ "epoch": 3.889969435954432,
354
+ "grad_norm": 0.818808913230896,
355
+ "learning_rate": 0.0005407983699175697,
356
+ "loss": 0.1795,
357
+ "step": 14000
358
+ },
359
+ {
360
+ "epoch": 4.001111419838844,
361
+ "eval_loss": 0.18558593094348907,
362
+ "eval_runtime": 6.8949,
363
+ "eval_samples_per_second": 72.517,
364
+ "eval_steps_per_second": 4.641,
365
+ "step": 14400
366
+ },
367
+ {
368
+ "epoch": 4.0288969158099475,
369
+ "grad_norm": 0.5338103771209717,
370
+ "learning_rate": 0.000531536537927202,
371
+ "loss": 0.1732,
372
+ "step": 14500
373
+ },
374
+ {
375
+ "epoch": 4.167824395665463,
376
+ "grad_norm": 0.6316047310829163,
377
+ "learning_rate": 0.0005222747059368344,
378
+ "loss": 0.1678,
379
+ "step": 15000
380
+ },
381
+ {
382
+ "epoch": 4.201166990830786,
383
+ "eval_loss": 0.19053161144256592,
384
+ "eval_runtime": 6.4789,
385
+ "eval_samples_per_second": 77.173,
386
+ "eval_steps_per_second": 4.939,
387
+ "step": 15120
388
+ },
389
+ {
390
+ "epoch": 4.306751875520978,
391
+ "grad_norm": 0.9015474319458008,
392
+ "learning_rate": 0.0005130313976104474,
393
+ "loss": 0.1693,
394
+ "step": 15500
395
+ },
396
+ {
397
+ "epoch": 4.4012225618227285,
398
+ "eval_loss": 0.19033345580101013,
399
+ "eval_runtime": 6.2453,
400
+ "eval_samples_per_second": 80.061,
401
+ "eval_steps_per_second": 5.124,
402
+ "step": 15840
403
+ },
404
+ {
405
+ "epoch": 4.445679355376494,
406
+ "grad_norm": 0.5398434400558472,
407
+ "learning_rate": 0.0005037695656200797,
408
+ "loss": 0.1705,
409
+ "step": 16000
410
+ },
411
+ {
412
+ "epoch": 4.584606835232009,
413
+ "grad_norm": 0.6211907863616943,
414
+ "learning_rate": 0.0004945077336297119,
415
+ "loss": 0.1675,
416
+ "step": 16500
417
+ },
418
+ {
419
+ "epoch": 4.601278132814671,
420
+ "eval_loss": 0.1857684701681137,
421
+ "eval_runtime": 6.2063,
422
+ "eval_samples_per_second": 80.563,
423
+ "eval_steps_per_second": 5.156,
424
+ "step": 16560
425
+ },
426
+ {
427
+ "epoch": 4.723534315087524,
428
+ "grad_norm": 0.6166074872016907,
429
+ "learning_rate": 0.0004852459016393443,
430
+ "loss": 0.1681,
431
+ "step": 17000
432
+ },
433
+ {
434
+ "epoch": 4.801333703806613,
435
+ "eval_loss": 0.18442219495773315,
436
+ "eval_runtime": 6.2555,
437
+ "eval_samples_per_second": 79.93,
438
+ "eval_steps_per_second": 5.116,
439
+ "step": 17280
440
+ },
441
+ {
442
+ "epoch": 4.86246179494304,
443
+ "grad_norm": 0.5619335174560547,
444
+ "learning_rate": 0.00047600259331295736,
445
+ "loss": 0.1687,
446
+ "step": 17500
447
+ },
448
+ {
449
+ "epoch": 5.001389274798555,
450
+ "grad_norm": 0.7084242701530457,
451
+ "learning_rate": 0.0004667407613225896,
452
+ "loss": 0.1635,
453
+ "step": 18000
454
+ },
455
+ {
456
+ "epoch": 5.001389274798555,
457
+ "eval_loss": 0.1823691427707672,
458
+ "eval_runtime": 6.4719,
459
+ "eval_samples_per_second": 77.257,
460
+ "eval_steps_per_second": 4.944,
461
+ "step": 18000
462
+ },
463
+ {
464
+ "epoch": 5.14031675465407,
465
+ "grad_norm": 0.6466693878173828,
466
+ "learning_rate": 0.0004574789293322219,
467
+ "loss": 0.1537,
468
+ "step": 18500
469
+ },
470
+ {
471
+ "epoch": 5.201444845790498,
472
+ "eval_loss": 0.18211981654167175,
473
+ "eval_runtime": 6.28,
474
+ "eval_samples_per_second": 79.618,
475
+ "eval_steps_per_second": 5.096,
476
+ "step": 18720
477
+ },
478
+ {
479
+ "epoch": 5.279244234509586,
480
+ "grad_norm": 0.760137677192688,
481
+ "learning_rate": 0.00044821709734185424,
482
+ "loss": 0.155,
483
+ "step": 19000
484
+ },
485
+ {
486
+ "epoch": 5.401500416782439,
487
+ "eval_loss": 0.17618674039840698,
488
+ "eval_runtime": 6.2993,
489
+ "eval_samples_per_second": 79.374,
490
+ "eval_steps_per_second": 5.08,
491
+ "step": 19440
492
+ },
493
+ {
494
+ "epoch": 5.418171714365101,
495
+ "grad_norm": 0.6954505443572998,
496
+ "learning_rate": 0.00043897378901546733,
497
+ "loss": 0.155,
498
+ "step": 19500
499
+ },
500
+ {
501
+ "epoch": 5.5570991942206165,
502
+ "grad_norm": 0.5655320882797241,
503
+ "learning_rate": 0.00042971195702509957,
504
+ "loss": 0.1559,
505
+ "step": 20000
506
+ },
507
+ {
508
+ "epoch": 5.601555987774382,
509
+ "eval_loss": 0.18366502225399017,
510
+ "eval_runtime": 6.3293,
511
+ "eval_samples_per_second": 78.998,
512
+ "eval_steps_per_second": 5.056,
513
+ "step": 20160
514
+ },
515
+ {
516
+ "epoch": 5.6960266740761325,
517
+ "grad_norm": 0.5522324442863464,
518
+ "learning_rate": 0.00042045012503473186,
519
+ "loss": 0.1565,
520
+ "step": 20500
521
+ },
522
+ {
523
+ "epoch": 5.801611558766324,
524
+ "eval_loss": 0.1724882870912552,
525
+ "eval_runtime": 6.3076,
526
+ "eval_samples_per_second": 79.269,
527
+ "eval_steps_per_second": 5.073,
528
+ "step": 20880
529
+ },
530
+ {
531
+ "epoch": 5.834954153931648,
532
+ "grad_norm": 0.5771639347076416,
533
+ "learning_rate": 0.0004111882930443642,
534
+ "loss": 0.1548,
535
+ "step": 21000
536
+ },
537
+ {
538
+ "epoch": 5.973881633787163,
539
+ "grad_norm": 0.7794287204742432,
540
+ "learning_rate": 0.0004019264610539965,
541
+ "loss": 0.151,
542
+ "step": 21500
543
+ },
544
+ {
545
+ "epoch": 6.001667129758266,
546
+ "eval_loss": 0.17095144093036652,
547
+ "eval_runtime": 6.2425,
548
+ "eval_samples_per_second": 80.096,
549
+ "eval_steps_per_second": 5.126,
550
+ "step": 21600
551
+ },
552
+ {
553
+ "epoch": 6.112809113642679,
554
+ "grad_norm": 0.755778968334198,
555
+ "learning_rate": 0.0003926646290636288,
556
+ "loss": 0.1444,
557
+ "step": 22000
558
+ },
559
+ {
560
+ "epoch": 6.201722700750208,
561
+ "eval_loss": 0.1705874651670456,
562
+ "eval_runtime": 6.3293,
563
+ "eval_samples_per_second": 78.998,
564
+ "eval_steps_per_second": 5.056,
565
+ "step": 22320
566
+ },
567
+ {
568
+ "epoch": 6.251736593498194,
569
+ "grad_norm": 0.5752654671669006,
570
+ "learning_rate": 0.0003834027970732611,
571
+ "loss": 0.1423,
572
+ "step": 22500
573
+ },
574
+ {
575
+ "epoch": 6.390664073353709,
576
+ "grad_norm": 0.5828496217727661,
577
+ "learning_rate": 0.0003741409650828934,
578
+ "loss": 0.1447,
579
+ "step": 23000
580
+ },
581
+ {
582
+ "epoch": 6.401778271742151,
583
+ "eval_loss": 0.1719101518392563,
584
+ "eval_runtime": 6.3021,
585
+ "eval_samples_per_second": 79.339,
586
+ "eval_steps_per_second": 5.078,
587
+ "step": 23040
588
+ },
589
+ {
590
+ "epoch": 6.529591553209225,
591
+ "grad_norm": 0.5708982944488525,
592
+ "learning_rate": 0.0003648976567565065,
593
+ "loss": 0.1429,
594
+ "step": 23500
595
+ },
596
+ {
597
+ "epoch": 6.601833842734093,
598
+ "eval_loss": 0.17164455354213715,
599
+ "eval_runtime": 6.3252,
600
+ "eval_samples_per_second": 79.048,
601
+ "eval_steps_per_second": 5.059,
602
+ "step": 23760
603
+ },
604
+ {
605
+ "epoch": 6.66851903306474,
606
+ "grad_norm": 0.6801475286483765,
607
+ "learning_rate": 0.0003556358247661388,
608
+ "loss": 0.1428,
609
+ "step": 24000
610
+ },
611
+ {
612
+ "epoch": 6.801889413726035,
613
+ "eval_loss": 0.16734325885772705,
614
+ "eval_runtime": 6.4095,
615
+ "eval_samples_per_second": 78.01,
616
+ "eval_steps_per_second": 4.993,
617
+ "step": 24480
618
+ },
619
+ {
620
+ "epoch": 6.807446512920255,
621
+ "grad_norm": 0.5865324139595032,
622
+ "learning_rate": 0.00034637399277577107,
623
+ "loss": 0.1424,
624
+ "step": 24500
625
+ },
626
+ {
627
+ "epoch": 6.946373992775771,
628
+ "grad_norm": 0.7098519206047058,
629
+ "learning_rate": 0.00033711216078540336,
630
+ "loss": 0.1407,
631
+ "step": 25000
632
+ },
633
+ {
634
+ "epoch": 7.001944984717977,
635
+ "eval_loss": 0.16686856746673584,
636
+ "eval_runtime": 6.4894,
637
+ "eval_samples_per_second": 77.049,
638
+ "eval_steps_per_second": 4.931,
639
+ "step": 25200
640
+ },
641
+ {
642
+ "epoch": 7.085301472631286,
643
+ "grad_norm": 0.8402431607246399,
644
+ "learning_rate": 0.00032785032879503566,
645
+ "loss": 0.1335,
646
+ "step": 25500
647
+ },
648
+ {
649
+ "epoch": 7.20200055570992,
650
+ "eval_loss": 0.16496331989765167,
651
+ "eval_runtime": 6.166,
652
+ "eval_samples_per_second": 81.09,
653
+ "eval_steps_per_second": 5.19,
654
+ "step": 25920
655
+ },
656
+ {
657
+ "epoch": 7.2242289524868015,
658
+ "grad_norm": 0.8292597532272339,
659
+ "learning_rate": 0.0003186070204686487,
660
+ "loss": 0.1297,
661
+ "step": 26000
662
+ },
663
+ {
664
+ "epoch": 7.3631564323423175,
665
+ "grad_norm": 0.8218772411346436,
666
+ "learning_rate": 0.00030934518847828104,
667
+ "loss": 0.131,
668
+ "step": 26500
669
+ },
670
+ {
671
+ "epoch": 7.402056126701861,
672
+ "eval_loss": 0.1669527292251587,
673
+ "eval_runtime": 6.3072,
674
+ "eval_samples_per_second": 79.274,
675
+ "eval_steps_per_second": 5.074,
676
+ "step": 26640
677
+ },
678
+ {
679
+ "epoch": 7.502083912197833,
680
+ "grad_norm": 0.39585080742836,
681
+ "learning_rate": 0.0003000833564879133,
682
+ "loss": 0.1314,
683
+ "step": 27000
684
+ },
685
+ {
686
+ "epoch": 7.602111697693804,
687
+ "eval_loss": 0.1617124080657959,
688
+ "eval_runtime": 6.4904,
689
+ "eval_samples_per_second": 77.037,
690
+ "eval_steps_per_second": 4.93,
691
+ "step": 27360
692
+ },
693
+ {
694
+ "epoch": 7.641011392053348,
695
+ "grad_norm": 0.5454237461090088,
696
+ "learning_rate": 0.00029082152449754563,
697
+ "loss": 0.131,
698
+ "step": 27500
699
+ },
700
+ {
701
+ "epoch": 7.779938871908864,
702
+ "grad_norm": 0.48045065999031067,
703
+ "learning_rate": 0.000281559692507178,
704
+ "loss": 0.1293,
705
+ "step": 28000
706
+ },
707
+ {
708
+ "epoch": 7.802167268685746,
709
+ "eval_loss": 0.1614612638950348,
710
+ "eval_runtime": 6.2421,
711
+ "eval_samples_per_second": 80.101,
712
+ "eval_steps_per_second": 5.126,
713
+ "step": 28080
714
+ },
715
+ {
716
+ "epoch": 7.918866351764379,
717
+ "grad_norm": 0.4793488681316376,
718
+ "learning_rate": 0.0002722978605168102,
719
+ "loss": 0.1309,
720
+ "step": 28500
721
+ }
722
+ ],
723
+ "logging_steps": 500,
724
+ "max_steps": 43188,
725
+ "num_input_tokens_seen": 0,
726
+ "num_train_epochs": 12,
727
+ "save_steps": 500,
728
+ "stateful_callbacks": {
729
+ "TrainerControl": {
730
+ "args": {
731
+ "should_epoch_stop": false,
732
+ "should_evaluate": false,
733
+ "should_log": false,
734
+ "should_save": true,
735
+ "should_training_stop": false
736
+ },
737
+ "attributes": {}
738
+ }
739
+ },
740
+ "total_flos": 1.7032627624335114e+18,
741
+ "train_batch_size": 2,
742
+ "trial_name": null,
743
+ "trial_params": null
744
+ }
checkpoint-28792/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:139adae8edce22afe6c27bc652b1dce50af99b8929a4bc88f9a065e1541a95e9
3
+ size 5496