File size: 4,828 Bytes
dd0fdfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-task1-lemma_command_small-deepseek-coder-1.3b-base-ddp-8lr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lemexp-task1-lemma_command_small-deepseek-coder-1.3b-base-ddp-8lr

This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4760

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss |
|:-------------:|:-------:|:-----:|:---------------:|
| No log        | 0.2003  | 461   | 0.6892          |
| 0.7574        | 0.4005  | 922   | 0.6424          |
| 0.6677        | 0.6008  | 1383  | 0.6216          |
| 0.6303        | 0.8010  | 1844  | 0.5984          |
| 0.6041        | 1.0013  | 2305  | 0.5879          |
| 0.5735        | 1.2016  | 2766  | 0.5722          |
| 0.5391        | 1.4018  | 3227  | 0.5680          |
| 0.5391        | 1.6021  | 3688  | 0.5550          |
| 0.535         | 1.8023  | 4149  | 0.5425          |
| 0.5287        | 2.0026  | 4610  | 0.5379          |
| 0.4853        | 2.2029  | 5071  | 0.5346          |
| 0.4814        | 2.4031  | 5532  | 0.5217          |
| 0.4814        | 2.6034  | 5993  | 0.5209          |
| 0.4788        | 2.8036  | 6454  | 0.5221          |
| 0.4838        | 3.0039  | 6915  | 0.5175          |
| 0.4701        | 3.2042  | 7376  | 0.5148          |
| 0.4385        | 3.4044  | 7837  | 0.5113          |
| 0.4364        | 3.6047  | 8298  | 0.5008          |
| 0.4414        | 3.8050  | 8759  | 0.4942          |
| 0.4437        | 4.0052  | 9220  | 0.4970          |
| 0.417         | 4.2055  | 9681  | 0.4972          |
| 0.4037        | 4.4057  | 10142 | 0.4994          |
| 0.4084        | 4.6060  | 10603 | 0.4868          |
| 0.4124        | 4.8063  | 11064 | 0.4834          |
| 0.411         | 5.0065  | 11525 | 0.4899          |
| 0.411         | 5.2068  | 11986 | 0.4813          |
| 0.3653        | 5.4070  | 12447 | 0.4861          |
| 0.3768        | 5.6073  | 12908 | 0.4777          |
| 0.3801        | 5.8076  | 13369 | 0.4807          |
| 0.3758        | 6.0078  | 13830 | 0.4789          |
| 0.3642        | 6.2081  | 14291 | 0.4871          |
| 0.3438        | 6.4083  | 14752 | 0.4755          |
| 0.3464        | 6.6086  | 15213 | 0.4723          |
| 0.3487        | 6.8089  | 15674 | 0.4667          |
| 0.3492        | 7.0091  | 16135 | 0.4702          |
| 0.3173        | 7.2094  | 16596 | 0.4775          |
| 0.3177        | 7.4096  | 17057 | 0.4680          |
| 0.3195        | 7.6099  | 17518 | 0.4652          |
| 0.3195        | 7.8102  | 17979 | 0.4677          |
| 0.3196        | 8.0104  | 18440 | 0.4718          |
| 0.3155        | 8.2107  | 18901 | 0.4697          |
| 0.2838        | 8.4109  | 19362 | 0.4645          |
| 0.2915        | 8.6112  | 19823 | 0.4662          |
| 0.2895        | 8.8115  | 20284 | 0.4538          |
| 0.291         | 9.0117  | 20745 | 0.4706          |
| 0.2699        | 9.2120  | 21206 | 0.4666          |
| 0.2573        | 9.4123  | 21667 | 0.4654          |
| 0.264         | 9.6125  | 22128 | 0.4646          |
| 0.2642        | 9.8128  | 22589 | 0.4619          |
| 0.2647        | 10.0130 | 23050 | 0.4739          |
| 0.2333        | 10.2133 | 23511 | 0.4733          |
| 0.2333        | 10.4136 | 23972 | 0.4706          |
| 0.2339        | 10.6138 | 24433 | 0.4674          |
| 0.2347        | 10.8141 | 24894 | 0.4656          |
| 0.2391        | 11.0143 | 25355 | 0.4787          |
| 0.2242        | 11.2146 | 25816 | 0.4788          |
| 0.2089        | 11.4149 | 26277 | 0.4824          |
| 0.211         | 11.6151 | 26738 | 0.4767          |
| 0.2152        | 11.8154 | 27199 | 0.4760          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0