File size: 4,818 Bytes
3c46d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-task1-lemma_command_full-deepseek-coder-1.3b-base-ddp-8lr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lemexp-task1-lemma_command_full-deepseek-coder-1.3b-base-ddp-8lr

This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4320

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.7149        | 0.2   | 2121   | 0.6754          |
| 0.684         | 0.4   | 4242   | 0.6408          |
| 0.6664        | 0.6   | 6363   | 0.6271          |
| 0.6568        | 0.8   | 8484   | 0.6106          |
| 0.6445        | 1.0   | 10605  | 0.6016          |
| 0.6188        | 1.2   | 12726  | 0.5927          |
| 0.618         | 1.4   | 14847  | 0.5864          |
| 0.6161        | 1.6   | 16968  | 0.5864          |
| 0.6239        | 1.8   | 19089  | 0.5779          |
| 0.6126        | 2.0   | 21210  | 0.5764          |
| 0.5882        | 2.2   | 23331  | 0.5680          |
| 0.5955        | 2.4   | 25452  | 0.5647          |
| 0.5858        | 2.6   | 27573  | 0.5615          |
| 0.5882        | 2.8   | 29694  | 0.5574          |
| 0.5819        | 3.0   | 31815  | 0.5504          |
| 0.5759        | 3.2   | 33936  | 0.5544          |
| 0.5647        | 3.4   | 36057  | 0.5479          |
| 0.5687        | 3.6   | 38178  | 0.5458          |
| 0.5692        | 3.8   | 40299  | 0.5415          |
| 0.5633        | 4.0   | 42420  | 0.5398          |
| 0.5489        | 4.2   | 44541  | 0.5299          |
| 0.5482        | 4.4   | 46662  | 0.5246          |
| 0.5443        | 4.6   | 48783  | 0.5246          |
| 0.5466        | 4.8   | 50904  | 0.5225          |
| 0.5464        | 5.0   | 53025  | 0.5157          |
| 0.5249        | 5.2   | 55146  | 0.5203          |
| 0.5323        | 5.4   | 57267  | 0.5115          |
| 0.5227        | 5.6   | 59388  | 0.5075          |
| 0.5277        | 5.8   | 61509  | 0.5074          |
| 0.5214        | 6.0   | 63630  | 0.5040          |
| 0.5115        | 6.2   | 65751  | 0.4969          |
| 0.5088        | 6.4   | 67872  | 0.4950          |
| 0.511         | 6.6   | 69993  | 0.4912          |
| 0.5097        | 6.8   | 72114  | 0.4892          |
| 0.5024        | 7.0   | 74235  | 0.4877          |
| 0.4842        | 7.2   | 76356  | 0.4860          |
| 0.484         | 7.4   | 78477  | 0.4832          |
| 0.493         | 7.6   | 80598  | 0.4816          |
| 0.4863        | 7.8   | 82719  | 0.4759          |
| 0.4878        | 8.0   | 84840  | 0.4672          |
| 0.4644        | 8.2   | 86961  | 0.4705          |
| 0.4648        | 8.4   | 89082  | 0.4654          |
| 0.4663        | 8.6   | 91203  | 0.4612          |
| 0.4715        | 8.8   | 93324  | 0.4636          |
| 0.4669        | 9.0   | 95445  | 0.4591          |
| 0.4451        | 9.2   | 97566  | 0.4586          |
| 0.4457        | 9.4   | 99687  | 0.4580          |
| 0.4538        | 9.6   | 101808 | 0.4495          |
| 0.4489        | 9.8   | 103929 | 0.4492          |
| 0.4466        | 10.0  | 106050 | 0.4458          |
| 0.4252        | 10.2  | 108171 | 0.4470          |
| 0.4226        | 10.4  | 110292 | 0.4456          |
| 0.4244        | 10.6  | 112413 | 0.4402          |
| 0.4226        | 10.8  | 114534 | 0.4374          |
| 0.4203        | 11.0  | 116655 | 0.4352          |
| 0.4124        | 11.2  | 118776 | 0.4361          |
| 0.4039        | 11.4  | 120897 | 0.4340          |
| 0.405         | 11.6  | 123018 | 0.4321          |
| 0.4083        | 11.8  | 125139 | 0.4314          |
| 0.4025        | 12.0  | 127260 | 0.4320          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0