Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +533 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:212917
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
10 |
+
widget:
|
11 |
+
- source_sentence: statistik neraca arus dana indonesia
|
12 |
+
sentences:
|
13 |
+
- Statistik Kelapa Sawit Indonesia 2012
|
14 |
+
- Distribusi Perdagangan Komoditas Kedelai Indonesia 2023
|
15 |
+
- Data Runtun Statistik Konstruksi 1990-2010
|
16 |
+
- source_sentence: Seberapa besar kenaikan produksi IBS pada Triwulan IV Tahun 2013
|
17 |
+
dibandingkan Triwulan IV Tahun Sebelumnya?
|
18 |
+
sentences:
|
19 |
+
- Pertumbuhan PDB 2013 Mencapai 5,78 Persen
|
20 |
+
- Statistik Komuter Gerbangkertosusila Hasil Survei Komuter Gerbangkertosusila 2017
|
21 |
+
- Statistik Penduduk Lanjut Usia Provinsi Jawa Timur 2010-Hasil Sensus Penduduk
|
22 |
+
2010
|
23 |
+
- source_sentence: 'Penduduk Papua: migrasi 2015'
|
24 |
+
sentences:
|
25 |
+
- Rata-rata Upah/Gaji Bersih sebulan Buruh/Karyawan Pegawai Menurut Pendidikan Tertinggi
|
26 |
+
dan jenis pekerjaan utama, 2019
|
27 |
+
- Statistik Pemotongan Ternak 2010 dan 2011
|
28 |
+
- Statistik Harga Produsen Pertanian Sub Sektor Tanaman Pangan, Hortikultura dan
|
29 |
+
Perkebunan Rakyat 2010
|
30 |
+
- source_sentence: statistik konstruksi 2022
|
31 |
+
sentences:
|
32 |
+
- Studi Modal Sosial 2006
|
33 |
+
- BRS upah buruh agustus 2018
|
34 |
+
- Statistik Perdagangan Luar Negeri Indonesia Ekspor 2006 vol 1
|
35 |
+
- source_sentence: Statistik ekspor Indonesia Maret 2202
|
36 |
+
sentences:
|
37 |
+
- Produk Domestik Bruto Indonesia Triwulanan 2006-2010
|
38 |
+
- Indeks Perilaku Anti Korupsi (IPAK) Indonesia 2023 sebesar 3,92, menurun dibandingkan
|
39 |
+
IPAK 2022
|
40 |
+
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Januari 2023
|
41 |
+
datasets:
|
42 |
+
- yahyaabd/allstats-semantic-search-synthetic-dataset-v1
|
43 |
+
pipeline_tag: sentence-similarity
|
44 |
+
library_name: sentence-transformers
|
45 |
+
metrics:
|
46 |
+
- pearson_cosine
|
47 |
+
- spearman_cosine
|
48 |
+
model-index:
|
49 |
+
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
50 |
+
results:
|
51 |
+
- task:
|
52 |
+
type: semantic-similarity
|
53 |
+
name: Semantic Similarity
|
54 |
+
dataset:
|
55 |
+
name: allstats semantic search v1 dev
|
56 |
+
type: allstats-semantic-search-v1-dev
|
57 |
+
metrics:
|
58 |
+
- type: pearson_cosine
|
59 |
+
value: 0.9894566758405579
|
60 |
+
name: Pearson Cosine
|
61 |
+
- type: spearman_cosine
|
62 |
+
value: 0.9072484378842124
|
63 |
+
name: Spearman Cosine
|
64 |
+
- task:
|
65 |
+
type: semantic-similarity
|
66 |
+
name: Semantic Similarity
|
67 |
+
dataset:
|
68 |
+
name: allstat semantic search v1 test
|
69 |
+
type: allstat-semantic-search-v1-test
|
70 |
+
metrics:
|
71 |
+
- type: pearson_cosine
|
72 |
+
value: 0.9895284407960067
|
73 |
+
name: Pearson Cosine
|
74 |
+
- type: spearman_cosine
|
75 |
+
value: 0.9074137706349162
|
76 |
+
name: Spearman Cosine
|
77 |
+
---
|
78 |
+
|
79 |
+
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
80 |
+
|
81 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
82 |
+
|
83 |
+
## Model Details
|
84 |
+
|
85 |
+
### Model Description
|
86 |
+
- **Model Type:** Sentence Transformer
|
87 |
+
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
|
88 |
+
- **Maximum Sequence Length:** 128 tokens
|
89 |
+
- **Output Dimensionality:** 768 dimensions
|
90 |
+
- **Similarity Function:** Cosine Similarity
|
91 |
+
- **Training Dataset:**
|
92 |
+
- [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1)
|
93 |
+
<!-- - **Language:** Unknown -->
|
94 |
+
<!-- - **License:** Unknown -->
|
95 |
+
|
96 |
+
### Model Sources
|
97 |
+
|
98 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
99 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
100 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
101 |
+
|
102 |
+
### Full Model Architecture
|
103 |
+
|
104 |
+
```
|
105 |
+
SentenceTransformer(
|
106 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
107 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
108 |
+
)
|
109 |
+
```
|
110 |
+
|
111 |
+
## Usage
|
112 |
+
|
113 |
+
### Direct Usage (Sentence Transformers)
|
114 |
+
|
115 |
+
First install the Sentence Transformers library:
|
116 |
+
|
117 |
+
```bash
|
118 |
+
pip install -U sentence-transformers
|
119 |
+
```
|
120 |
+
|
121 |
+
Then you can load this model and run inference.
|
122 |
+
```python
|
123 |
+
from sentence_transformers import SentenceTransformer
|
124 |
+
|
125 |
+
# Download from the 🤗 Hub
|
126 |
+
model = SentenceTransformer("yahyaabd/allstats-semantic-search-model-v1")
|
127 |
+
# Run inference
|
128 |
+
sentences = [
|
129 |
+
'Statistik ekspor Indonesia Maret 2202',
|
130 |
+
'Produk Domestik Bruto Indonesia Triwulanan 2006-2010',
|
131 |
+
'Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Januari 2023',
|
132 |
+
]
|
133 |
+
embeddings = model.encode(sentences)
|
134 |
+
print(embeddings.shape)
|
135 |
+
# [3, 768]
|
136 |
+
|
137 |
+
# Get the similarity scores for the embeddings
|
138 |
+
similarities = model.similarity(embeddings, embeddings)
|
139 |
+
print(similarities.shape)
|
140 |
+
# [3, 3]
|
141 |
+
```
|
142 |
+
|
143 |
+
<!--
|
144 |
+
### Direct Usage (Transformers)
|
145 |
+
|
146 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
147 |
+
|
148 |
+
</details>
|
149 |
+
-->
|
150 |
+
|
151 |
+
<!--
|
152 |
+
### Downstream Usage (Sentence Transformers)
|
153 |
+
|
154 |
+
You can finetune this model on your own dataset.
|
155 |
+
|
156 |
+
<details><summary>Click to expand</summary>
|
157 |
+
|
158 |
+
</details>
|
159 |
+
-->
|
160 |
+
|
161 |
+
<!--
|
162 |
+
### Out-of-Scope Use
|
163 |
+
|
164 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
165 |
+
-->
|
166 |
+
|
167 |
+
## Evaluation
|
168 |
+
|
169 |
+
### Metrics
|
170 |
+
|
171 |
+
#### Semantic Similarity
|
172 |
+
|
173 |
+
* Datasets: `allstats-semantic-search-v1-dev` and `allstat-semantic-search-v1-test`
|
174 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
175 |
+
|
176 |
+
| Metric | allstats-semantic-search-v1-dev | allstat-semantic-search-v1-test |
|
177 |
+
|:--------------------|:--------------------------------|:--------------------------------|
|
178 |
+
| pearson_cosine | 0.9895 | 0.9895 |
|
179 |
+
| **spearman_cosine** | **0.9072** | **0.9074** |
|
180 |
+
|
181 |
+
<!--
|
182 |
+
## Bias, Risks and Limitations
|
183 |
+
|
184 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
185 |
+
-->
|
186 |
+
|
187 |
+
<!--
|
188 |
+
### Recommendations
|
189 |
+
|
190 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
191 |
+
-->
|
192 |
+
|
193 |
+
## Training Details
|
194 |
+
|
195 |
+
### Training Dataset
|
196 |
+
|
197 |
+
#### allstats-semantic-search-synthetic-dataset-v1
|
198 |
+
|
199 |
+
* Dataset: [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) at [06f849a](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1/tree/06f849af5602fea6ce00e5ecdd9a99cd0cafc2de)
|
200 |
+
* Size: 212,917 training samples
|
201 |
+
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
|
202 |
+
* Approximate statistics based on the first 1000 samples:
|
203 |
+
| | query | doc | label |
|
204 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
205 |
+
| type | string | string | float |
|
206 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 11.48 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.89 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.52</li><li>max: 1.0</li></ul> |
|
207 |
+
* Samples:
|
208 |
+
| query | doc | label |
|
209 |
+
|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:------------------|
|
210 |
+
| <code>ringkasan aktivitas badan pusat statistik tahun 2018</code> | <code>Statistik Harga Produsen sektor pertanian di indonesia 2008</code> | <code>0.1</code> |
|
211 |
+
| <code>indikator kesejahteraan petani rejang lebong 2015</code> | <code>Diagram Timbang Nilai Tukar Petani Kabupaten Rejang Lebong 2015</code> | <code>0.82</code> |
|
212 |
+
| <code>Berapa persen kenaikan kunjungan wisatawan mancanegara pada April 2024?</code> | <code>Indeks Perilaku Anti Korupsi (IPAK) Indonesia 2023 sebesar 3,92, menurun dibandingkan IPAK 2022</code> | <code>0.0</code> |
|
213 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
214 |
+
```json
|
215 |
+
{
|
216 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
217 |
+
}
|
218 |
+
```
|
219 |
+
|
220 |
+
### Evaluation Dataset
|
221 |
+
|
222 |
+
#### allstats-semantic-search-synthetic-dataset-v1
|
223 |
+
|
224 |
+
* Dataset: [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) at [06f849a](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1/tree/06f849af5602fea6ce00e5ecdd9a99cd0cafc2de)
|
225 |
+
* Size: 26,614 evaluation samples
|
226 |
+
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
|
227 |
+
* Approximate statistics based on the first 1000 samples:
|
228 |
+
| | query | doc | label |
|
229 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
230 |
+
| type | string | string | float |
|
231 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 11.21 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.41 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
|
232 |
+
* Samples:
|
233 |
+
| query | doc | label |
|
234 |
+
|:-----------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:------------------|
|
235 |
+
| <code>Laporan bulanan ekonomi Indonesia bulan November 201</code> | <code>Laporan Bulanan Data Sosial Ekonomi November 2021</code> | <code>0.92</code> |
|
236 |
+
| <code>pekerjaan layak di indonesia tahun 2022: data dan analisis</code> | <code>Statistik Penduduk Lanjut Usia Provinsi Papua Barat 2010-Hasil Sensus Penduduk 2010</code> | <code>0.09</code> |
|
237 |
+
| <code>Tabel pendapatan rata-rata pekerja lepas berdasarkan provinsi dan pendidikan tahun 2021</code> | <code>Nilai Impor Kendaraan Bermotor Menurut Negara Asal Utama (Nilai CIF:juta US$), 2018-2023</code> | <code>0.1</code> |
|
238 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
239 |
+
```json
|
240 |
+
{
|
241 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
242 |
+
}
|
243 |
+
```
|
244 |
+
|
245 |
+
### Training Hyperparameters
|
246 |
+
#### Non-Default Hyperparameters
|
247 |
+
|
248 |
+
- `eval_strategy`: steps
|
249 |
+
- `per_device_train_batch_size`: 32
|
250 |
+
- `per_device_eval_batch_size`: 32
|
251 |
+
- `num_train_epochs`: 4
|
252 |
+
- `warmup_ratio`: 0.1
|
253 |
+
- `fp16`: True
|
254 |
+
|
255 |
+
#### All Hyperparameters
|
256 |
+
<details><summary>Click to expand</summary>
|
257 |
+
|
258 |
+
- `overwrite_output_dir`: False
|
259 |
+
- `do_predict`: False
|
260 |
+
- `eval_strategy`: steps
|
261 |
+
- `prediction_loss_only`: True
|
262 |
+
- `per_device_train_batch_size`: 32
|
263 |
+
- `per_device_eval_batch_size`: 32
|
264 |
+
- `per_gpu_train_batch_size`: None
|
265 |
+
- `per_gpu_eval_batch_size`: None
|
266 |
+
- `gradient_accumulation_steps`: 1
|
267 |
+
- `eval_accumulation_steps`: None
|
268 |
+
- `torch_empty_cache_steps`: None
|
269 |
+
- `learning_rate`: 5e-05
|
270 |
+
- `weight_decay`: 0.0
|
271 |
+
- `adam_beta1`: 0.9
|
272 |
+
- `adam_beta2`: 0.999
|
273 |
+
- `adam_epsilon`: 1e-08
|
274 |
+
- `max_grad_norm`: 1.0
|
275 |
+
- `num_train_epochs`: 4
|
276 |
+
- `max_steps`: -1
|
277 |
+
- `lr_scheduler_type`: linear
|
278 |
+
- `lr_scheduler_kwargs`: {}
|
279 |
+
- `warmup_ratio`: 0.1
|
280 |
+
- `warmup_steps`: 0
|
281 |
+
- `log_level`: passive
|
282 |
+
- `log_level_replica`: warning
|
283 |
+
- `log_on_each_node`: True
|
284 |
+
- `logging_nan_inf_filter`: True
|
285 |
+
- `save_safetensors`: True
|
286 |
+
- `save_on_each_node`: False
|
287 |
+
- `save_only_model`: False
|
288 |
+
- `restore_callback_states_from_checkpoint`: False
|
289 |
+
- `no_cuda`: False
|
290 |
+
- `use_cpu`: False
|
291 |
+
- `use_mps_device`: False
|
292 |
+
- `seed`: 42
|
293 |
+
- `data_seed`: None
|
294 |
+
- `jit_mode_eval`: False
|
295 |
+
- `use_ipex`: False
|
296 |
+
- `bf16`: False
|
297 |
+
- `fp16`: True
|
298 |
+
- `fp16_opt_level`: O1
|
299 |
+
- `half_precision_backend`: auto
|
300 |
+
- `bf16_full_eval`: False
|
301 |
+
- `fp16_full_eval`: False
|
302 |
+
- `tf32`: None
|
303 |
+
- `local_rank`: 0
|
304 |
+
- `ddp_backend`: None
|
305 |
+
- `tpu_num_cores`: None
|
306 |
+
- `tpu_metrics_debug`: False
|
307 |
+
- `debug`: []
|
308 |
+
- `dataloader_drop_last`: False
|
309 |
+
- `dataloader_num_workers`: 0
|
310 |
+
- `dataloader_prefetch_factor`: None
|
311 |
+
- `past_index`: -1
|
312 |
+
- `disable_tqdm`: False
|
313 |
+
- `remove_unused_columns`: True
|
314 |
+
- `label_names`: None
|
315 |
+
- `load_best_model_at_end`: False
|
316 |
+
- `ignore_data_skip`: False
|
317 |
+
- `fsdp`: []
|
318 |
+
- `fsdp_min_num_params`: 0
|
319 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
320 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
321 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
322 |
+
- `deepspeed`: None
|
323 |
+
- `label_smoothing_factor`: 0.0
|
324 |
+
- `optim`: adamw_torch
|
325 |
+
- `optim_args`: None
|
326 |
+
- `adafactor`: False
|
327 |
+
- `group_by_length`: False
|
328 |
+
- `length_column_name`: length
|
329 |
+
- `ddp_find_unused_parameters`: None
|
330 |
+
- `ddp_bucket_cap_mb`: None
|
331 |
+
- `ddp_broadcast_buffers`: False
|
332 |
+
- `dataloader_pin_memory`: True
|
333 |
+
- `dataloader_persistent_workers`: False
|
334 |
+
- `skip_memory_metrics`: True
|
335 |
+
- `use_legacy_prediction_loop`: False
|
336 |
+
- `push_to_hub`: False
|
337 |
+
- `resume_from_checkpoint`: None
|
338 |
+
- `hub_model_id`: None
|
339 |
+
- `hub_strategy`: every_save
|
340 |
+
- `hub_private_repo`: None
|
341 |
+
- `hub_always_push`: False
|
342 |
+
- `gradient_checkpointing`: False
|
343 |
+
- `gradient_checkpointing_kwargs`: None
|
344 |
+
- `include_inputs_for_metrics`: False
|
345 |
+
- `include_for_metrics`: []
|
346 |
+
- `eval_do_concat_batches`: True
|
347 |
+
- `fp16_backend`: auto
|
348 |
+
- `push_to_hub_model_id`: None
|
349 |
+
- `push_to_hub_organization`: None
|
350 |
+
- `mp_parameters`:
|
351 |
+
- `auto_find_batch_size`: False
|
352 |
+
- `full_determinism`: False
|
353 |
+
- `torchdynamo`: None
|
354 |
+
- `ray_scope`: last
|
355 |
+
- `ddp_timeout`: 1800
|
356 |
+
- `torch_compile`: False
|
357 |
+
- `torch_compile_backend`: None
|
358 |
+
- `torch_compile_mode`: None
|
359 |
+
- `dispatch_batches`: None
|
360 |
+
- `split_batches`: None
|
361 |
+
- `include_tokens_per_second`: False
|
362 |
+
- `include_num_input_tokens_seen`: False
|
363 |
+
- `neftune_noise_alpha`: None
|
364 |
+
- `optim_target_modules`: None
|
365 |
+
- `batch_eval_metrics`: False
|
366 |
+
- `eval_on_start`: False
|
367 |
+
- `use_liger_kernel`: False
|
368 |
+
- `eval_use_gather_object`: False
|
369 |
+
- `average_tokens_across_devices`: False
|
370 |
+
- `prompts`: None
|
371 |
+
- `batch_sampler`: batch_sampler
|
372 |
+
- `multi_dataset_batch_sampler`: proportional
|
373 |
+
|
374 |
+
</details>
|
375 |
+
|
376 |
+
### Training Logs
|
377 |
+
<details><summary>Click to expand</summary>
|
378 |
+
|
379 |
+
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-v1-dev_spearman_cosine | allstat-semantic-search-v1-test_spearman_cosine |
|
380 |
+
|:------:|:-----:|:-------------:|:---------------:|:-----------------------------------------------:|:-----------------------------------------------:|
|
381 |
+
| 0.0376 | 250 | 0.0683 | 0.0432 | 0.6955 | - |
|
382 |
+
| 0.0751 | 500 | 0.0393 | 0.0322 | 0.7230 | - |
|
383 |
+
| 0.1127 | 750 | 0.0321 | 0.0270 | 0.7476 | - |
|
384 |
+
| 0.1503 | 1000 | 0.0255 | 0.0226 | 0.7789 | - |
|
385 |
+
| 0.1879 | 1250 | 0.024 | 0.0213 | 0.7683 | - |
|
386 |
+
| 0.2254 | 1500 | 0.022 | 0.0199 | 0.7727 | - |
|
387 |
+
| 0.2630 | 1750 | 0.0219 | 0.0195 | 0.7853 | - |
|
388 |
+
| 0.3006 | 2000 | 0.0202 | 0.0188 | 0.7795 | - |
|
389 |
+
| 0.3381 | 2250 | 0.0191 | 0.0187 | 0.7943 | - |
|
390 |
+
| 0.3757 | 2500 | 0.0198 | 0.0178 | 0.7842 | - |
|
391 |
+
| 0.4133 | 2750 | 0.0179 | 0.0184 | 0.7974 | - |
|
392 |
+
| 0.4509 | 3000 | 0.0179 | 0.0194 | 0.7810 | - |
|
393 |
+
| 0.4884 | 3250 | 0.0182 | 0.0168 | 0.8080 | - |
|
394 |
+
| 0.5260 | 3500 | 0.0174 | 0.0164 | 0.8131 | - |
|
395 |
+
| 0.5636 | 3750 | 0.0174 | 0.0154 | 0.8113 | - |
|
396 |
+
| 0.6011 | 4000 | 0.0169 | 0.0157 | 0.7981 | - |
|
397 |
+
| 0.6387 | 4250 | 0.0152 | 0.0146 | 0.8099 | - |
|
398 |
+
| 0.6763 | 4500 | 0.0148 | 0.0147 | 0.8091 | - |
|
399 |
+
| 0.7139 | 4750 | 0.0145 | 0.0145 | 0.8178 | - |
|
400 |
+
| 0.7514 | 5000 | 0.014 | 0.0139 | 0.8184 | - |
|
401 |
+
| 0.7890 | 5250 | 0.0145 | 0.0130 | 0.8166 | - |
|
402 |
+
| 0.8266 | 5500 | 0.0134 | 0.0129 | 0.8306 | - |
|
403 |
+
| 0.8641 | 5750 | 0.013 | 0.0122 | 0.8251 | - |
|
404 |
+
| 0.9017 | 6000 | 0.0136 | 0.0130 | 0.8265 | - |
|
405 |
+
| 0.9393 | 6250 | 0.0123 | 0.0126 | 0.8224 | - |
|
406 |
+
| 0.9769 | 6500 | 0.0113 | 0.0120 | 0.8305 | - |
|
407 |
+
| 1.0144 | 6750 | 0.0129 | 0.0117 | 0.8204 | - |
|
408 |
+
| 1.0520 | 7000 | 0.0106 | 0.0116 | 0.8284 | - |
|
409 |
+
| 1.0896 | 7250 | 0.01 | 0.0116 | 0.8303 | - |
|
410 |
+
| 1.1271 | 7500 | 0.0096 | 0.0110 | 0.8303 | - |
|
411 |
+
| 1.1647 | 7750 | 0.01 | 0.0113 | 0.8305 | - |
|
412 |
+
| 1.2023 | 8000 | 0.0116 | 0.0108 | 0.8300 | - |
|
413 |
+
| 1.2399 | 8250 | 0.0095 | 0.0104 | 0.8432 | - |
|
414 |
+
| 1.2774 | 8500 | 0.009 | 0.0104 | 0.8370 | - |
|
415 |
+
| 1.3150 | 8750 | 0.0101 | 0.0102 | 0.8434 | - |
|
416 |
+
| 1.3526 | 9000 | 0.01 | 0.0097 | 0.8450 | - |
|
417 |
+
| 1.3901 | 9250 | 0.0097 | 0.0103 | 0.8286 | - |
|
418 |
+
| 1.4277 | 9500 | 0.0092 | 0.0096 | 0.8393 | - |
|
419 |
+
| 1.4653 | 9750 | 0.0093 | 0.0089 | 0.8480 | - |
|
420 |
+
| 1.5029 | 10000 | 0.0088 | 0.0090 | 0.8439 | - |
|
421 |
+
| 1.5404 | 10250 | 0.0087 | 0.0089 | 0.8569 | - |
|
422 |
+
| 1.5780 | 10500 | 0.0082 | 0.0088 | 0.8488 | - |
|
423 |
+
| 1.6156 | 10750 | 0.009 | 0.0089 | 0.8493 | - |
|
424 |
+
| 1.6531 | 11000 | 0.0086 | 0.0086 | 0.8499 | - |
|
425 |
+
| 1.6907 | 11250 | 0.0076 | 0.0083 | 0.8600 | - |
|
426 |
+
| 1.7283 | 11500 | 0.0076 | 0.0081 | 0.8621 | - |
|
427 |
+
| 1.7659 | 11750 | 0.0079 | 0.0081 | 0.8611 | - |
|
428 |
+
| 1.8034 | 12000 | 0.0082 | 0.0085 | 0.8540 | - |
|
429 |
+
| 1.8410 | 12250 | 0.0074 | 0.0081 | 0.8620 | - |
|
430 |
+
| 1.8786 | 12500 | 0.007 | 0.0080 | 0.8639 | - |
|
431 |
+
| 1.9161 | 12750 | 0.0071 | 0.0083 | 0.8450 | - |
|
432 |
+
| 1.9537 | 13000 | 0.007 | 0.0076 | 0.8585 | - |
|
433 |
+
| 1.9913 | 13250 | 0.0072 | 0.0074 | 0.8640 | - |
|
434 |
+
| 2.0289 | 13500 | 0.0055 | 0.0069 | 0.8699 | - |
|
435 |
+
| 2.0664 | 13750 | 0.0056 | 0.0068 | 0.8673 | - |
|
436 |
+
| 2.1040 | 14000 | 0.0052 | 0.0066 | 0.8723 | - |
|
437 |
+
| 2.1416 | 14250 | 0.0059 | 0.0069 | 0.8644 | - |
|
438 |
+
| 2.1791 | 14500 | 0.0055 | 0.0068 | 0.8670 | - |
|
439 |
+
| 2.2167 | 14750 | 0.005 | 0.0065 | 0.8723 | - |
|
440 |
+
| 2.2543 | 15000 | 0.0053 | 0.0066 | 0.8766 | - |
|
441 |
+
| 2.2919 | 15250 | 0.0057 | 0.0065 | 0.8782 | - |
|
442 |
+
| 2.3294 | 15500 | 0.0053 | 0.0064 | 0.8749 | - |
|
443 |
+
| 2.3670 | 15750 | 0.0056 | 0.0070 | 0.8708 | - |
|
444 |
+
| 2.4046 | 16000 | 0.0058 | 0.0065 | 0.8731 | - |
|
445 |
+
| 2.4421 | 16250 | 0.0047 | 0.0064 | 0.8793 | - |
|
446 |
+
| 2.4797 | 16500 | 0.0049 | 0.0063 | 0.8801 | - |
|
447 |
+
| 2.5173 | 16750 | 0.0051 | 0.0063 | 0.8782 | - |
|
448 |
+
| 2.5549 | 17000 | 0.0053 | 0.0060 | 0.8799 | - |
|
449 |
+
| 2.5924 | 17250 | 0.0051 | 0.0059 | 0.8825 | - |
|
450 |
+
| 2.6300 | 17500 | 0.0048 | 0.0060 | 0.8761 | - |
|
451 |
+
| 2.6676 | 17750 | 0.0055 | 0.0055 | 0.8773 | - |
|
452 |
+
| 2.7051 | 18000 | 0.0045 | 0.0053 | 0.8833 | - |
|
453 |
+
| 2.7427 | 18250 | 0.0041 | 0.0053 | 0.8868 | - |
|
454 |
+
| 2.7803 | 18500 | 0.0051 | 0.0054 | 0.8811 | - |
|
455 |
+
| 2.8179 | 18750 | 0.004 | 0.0052 | 0.8881 | - |
|
456 |
+
| 2.8554 | 19000 | 0.0043 | 0.0053 | 0.8764 | - |
|
457 |
+
| 2.8930 | 19250 | 0.0047 | 0.0051 | 0.8874 | - |
|
458 |
+
| 2.9306 | 19500 | 0.0038 | 0.0051 | 0.8922 | - |
|
459 |
+
| 2.9681 | 19750 | 0.0047 | 0.0050 | 0.8821 | - |
|
460 |
+
| 3.0057 | 20000 | 0.0037 | 0.0048 | 0.8911 | - |
|
461 |
+
| 3.0433 | 20250 | 0.0031 | 0.0048 | 0.8911 | - |
|
462 |
+
| 3.0809 | 20500 | 0.0032 | 0.0046 | 0.8934 | - |
|
463 |
+
| 3.1184 | 20750 | 0.0034 | 0.0046 | 0.8942 | - |
|
464 |
+
| 3.1560 | 21000 | 0.0028 | 0.0045 | 0.8976 | - |
|
465 |
+
| 3.1936 | 21250 | 0.0034 | 0.0045 | 0.8932 | - |
|
466 |
+
| 3.2311 | 21500 | 0.003 | 0.0044 | 0.8959 | - |
|
467 |
+
| 3.2687 | 21750 | 0.0033 | 0.0044 | 0.8961 | - |
|
468 |
+
| 3.3063 | 22000 | 0.0029 | 0.0043 | 0.8995 | - |
|
469 |
+
| 3.3439 | 22250 | 0.0029 | 0.0044 | 0.8978 | - |
|
470 |
+
| 3.3814 | 22500 | 0.0027 | 0.0043 | 0.8998 | - |
|
471 |
+
| 3.4190 | 22750 | 0.003 | 0.0043 | 0.9019 | - |
|
472 |
+
| 3.4566 | 23000 | 0.0027 | 0.0042 | 0.8982 | - |
|
473 |
+
| 3.4941 | 23250 | 0.0027 | 0.0042 | 0.9014 | - |
|
474 |
+
| 3.5317 | 23500 | 0.0034 | 0.0042 | 0.9025 | - |
|
475 |
+
| 3.5693 | 23750 | 0.003 | 0.0041 | 0.9027 | - |
|
476 |
+
| 3.6069 | 24000 | 0.0029 | 0.0041 | 0.9003 | - |
|
477 |
+
| 3.6444 | 24250 | 0.0027 | 0.0040 | 0.9023 | - |
|
478 |
+
| 3.6820 | 24500 | 0.0027 | 0.0040 | 0.9035 | - |
|
479 |
+
| 3.7196 | 24750 | 0.0033 | 0.0040 | 0.9042 | - |
|
480 |
+
| 3.7571 | 25000 | 0.0028 | 0.0039 | 0.9053 | - |
|
481 |
+
| 3.7947 | 25250 | 0.0027 | 0.0039 | 0.9049 | - |
|
482 |
+
| 3.8323 | 25500 | 0.0033 | 0.0039 | 0.9057 | - |
|
483 |
+
| 3.8699 | 25750 | 0.0025 | 0.0039 | 0.9075 | - |
|
484 |
+
| 3.9074 | 26000 | 0.003 | 0.0039 | 0.9068 | - |
|
485 |
+
| 3.9450 | 26250 | 0.0026 | 0.0039 | 0.9073 | - |
|
486 |
+
| 3.9826 | 26500 | 0.0023 | 0.0038 | 0.9072 | - |
|
487 |
+
| 4.0 | 26616 | - | - | - | 0.9074 |
|
488 |
+
|
489 |
+
</details>
|
490 |
+
|
491 |
+
### Framework Versions
|
492 |
+
- Python: 3.10.12
|
493 |
+
- Sentence Transformers: 3.3.1
|
494 |
+
- Transformers: 4.47.1
|
495 |
+
- PyTorch: 2.2.2+cu121
|
496 |
+
- Accelerate: 1.2.1
|
497 |
+
- Datasets: 3.2.0
|
498 |
+
- Tokenizers: 0.21.0
|
499 |
+
|
500 |
+
## Citation
|
501 |
+
|
502 |
+
### BibTeX
|
503 |
+
|
504 |
+
#### Sentence Transformers
|
505 |
+
```bibtex
|
506 |
+
@inproceedings{reimers-2019-sentence-bert,
|
507 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
508 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
509 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
510 |
+
month = "11",
|
511 |
+
year = "2019",
|
512 |
+
publisher = "Association for Computational Linguistics",
|
513 |
+
url = "https://arxiv.org/abs/1908.10084",
|
514 |
+
}
|
515 |
+
```
|
516 |
+
|
517 |
+
<!--
|
518 |
+
## Glossary
|
519 |
+
|
520 |
+
*Clearly define terms in order to be accessible across audiences.*
|
521 |
+
-->
|
522 |
+
|
523 |
+
<!--
|
524 |
+
## Model Card Authors
|
525 |
+
|
526 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
527 |
+
-->
|
528 |
+
|
529 |
+
<!--
|
530 |
+
## Model Card Contact
|
531 |
+
|
532 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
533 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "xlm-roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.47.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 250002
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.2.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33d1ebf6638ce90842d5477df62360cf5ea1d3feda70786e492a40281512166c
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"max_length": 128,
|
51 |
+
"model_max_length": 128,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "</s>",
|
57 |
+
"stride": 0,
|
58 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "<unk>"
|
62 |
+
}
|