Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +587 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:212940
|
| 8 |
+
- loss:CosineSimilarityLoss
|
| 9 |
+
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: Ringkasan data strategis BPS 2012
|
| 12 |
+
sentences:
|
| 13 |
+
- Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Provinsi dan
|
| 14 |
+
Jenis Pekerjaan Utama, 2021
|
| 15 |
+
- Laporan Perekonomian Indonesia 2007
|
| 16 |
+
- Statistik Potensi Desa Provinsi Banten 2008
|
| 17 |
+
- source_sentence: tahun berapa ekspor naik 2,37% dan impor naik 30,30%?
|
| 18 |
+
sentences:
|
| 19 |
+
- Bulan November 2006 Ekspor Naik 2,37 % dan Impor Naik 30,30 %
|
| 20 |
+
- Indeks Harga Konsumen per Kelompok di 82 Kota <sup>1</sup> (2012=100)
|
| 21 |
+
- 'Februari 2022: Tingkat Pengangguran Terbuka (TPT) sebesar 5,83 persen dan Rata-rata
|
| 22 |
+
upah buruh sebesar 2,89 juta rupiah per bulan'
|
| 23 |
+
- source_sentence: akses air bersih di indonesia (2005-2009)
|
| 24 |
+
sentences:
|
| 25 |
+
- Desember 2016, Rupiah Terapresiasi 0,74 Persen Terhadap Dolar Amerika
|
| 26 |
+
- Statistik Air Bersih 2005-2009
|
| 27 |
+
- Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Pendidikan Tertinggi
|
| 28 |
+
yang Ditamatkan dan Lapangan Pekerjaan Utama di 17 Sektor (rupiah), 2018
|
| 29 |
+
- source_sentence: Tinjauan Regional Berdasarkan PDRB Kabupaten/Kota 2014-2018, Buku
|
| 30 |
+
2 Pulau Jawa dan Bali
|
| 31 |
+
sentences:
|
| 32 |
+
- Profil Migran Hasil Susenas 2011-2012
|
| 33 |
+
- Statistik Gas Kota 2004-2008
|
| 34 |
+
- Jumlah kunjungan wisman ke Indonesia melalui pintu masuk utama pada Juni 2022
|
| 35 |
+
mencapai 345,44 ribu kunjungan dan Jumlah penumpang angkutan udara internasional
|
| 36 |
+
pada Juni 2022 naik 23,28 persen
|
| 37 |
+
- source_sentence: perubahan nilai tukar petani bulan mei 2017
|
| 38 |
+
sentences:
|
| 39 |
+
- Perkembangan Nilai Tukar Petani Mei 2017
|
| 40 |
+
- NTP Naik 0,15%, Harga Gabah Kualitas GKG Naik 0,98%
|
| 41 |
+
- Statistik Restoran/Rumah Makan Tahun 2014
|
| 42 |
+
datasets:
|
| 43 |
+
- yahyaabd/allstats-semantic-search-synthetic-dataset-v1
|
| 44 |
+
pipeline_tag: sentence-similarity
|
| 45 |
+
library_name: sentence-transformers
|
| 46 |
+
metrics:
|
| 47 |
+
- pearson_cosine
|
| 48 |
+
- spearman_cosine
|
| 49 |
+
model-index:
|
| 50 |
+
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
| 51 |
+
results:
|
| 52 |
+
- task:
|
| 53 |
+
type: semantic-similarity
|
| 54 |
+
name: Semantic Similarity
|
| 55 |
+
dataset:
|
| 56 |
+
name: allstats semantic search v1 3 dev
|
| 57 |
+
type: allstats-semantic-search-v1-3-dev
|
| 58 |
+
metrics:
|
| 59 |
+
- type: pearson_cosine
|
| 60 |
+
value: 0.9955935469233214
|
| 61 |
+
name: Pearson Cosine
|
| 62 |
+
- type: spearman_cosine
|
| 63 |
+
value: 0.9588270212992008
|
| 64 |
+
name: Spearman Cosine
|
| 65 |
+
- task:
|
| 66 |
+
type: semantic-similarity
|
| 67 |
+
name: Semantic Similarity
|
| 68 |
+
dataset:
|
| 69 |
+
name: allstat semantic search v1 3 test
|
| 70 |
+
type: allstat-semantic-search-v1-3-test
|
| 71 |
+
metrics:
|
| 72 |
+
- type: pearson_cosine
|
| 73 |
+
value: 0.9955194411367296
|
| 74 |
+
name: Pearson Cosine
|
| 75 |
+
- type: spearman_cosine
|
| 76 |
+
value: 0.958337873285875
|
| 77 |
+
name: Spearman Cosine
|
| 78 |
+
---
|
| 79 |
+
|
| 80 |
+
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
| 81 |
+
|
| 82 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 83 |
+
|
| 84 |
+
## Model Details
|
| 85 |
+
|
| 86 |
+
### Model Description
|
| 87 |
+
- **Model Type:** Sentence Transformer
|
| 88 |
+
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
|
| 89 |
+
- **Maximum Sequence Length:** 128 tokens
|
| 90 |
+
- **Output Dimensionality:** 768 dimensions
|
| 91 |
+
- **Similarity Function:** Cosine Similarity
|
| 92 |
+
- **Training Dataset:**
|
| 93 |
+
- [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1)
|
| 94 |
+
<!-- - **Language:** Unknown -->
|
| 95 |
+
<!-- - **License:** Unknown -->
|
| 96 |
+
|
| 97 |
+
### Model Sources
|
| 98 |
+
|
| 99 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 100 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 101 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 102 |
+
|
| 103 |
+
### Full Model Architecture
|
| 104 |
+
|
| 105 |
+
```
|
| 106 |
+
SentenceTransformer(
|
| 107 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
| 108 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 109 |
+
)
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
## Usage
|
| 113 |
+
|
| 114 |
+
### Direct Usage (Sentence Transformers)
|
| 115 |
+
|
| 116 |
+
First install the Sentence Transformers library:
|
| 117 |
+
|
| 118 |
+
```bash
|
| 119 |
+
pip install -U sentence-transformers
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
Then you can load this model and run inference.
|
| 123 |
+
```python
|
| 124 |
+
from sentence_transformers import SentenceTransformer
|
| 125 |
+
|
| 126 |
+
# Download from the 🤗 Hub
|
| 127 |
+
model = SentenceTransformer("yahyaabd/allstats-semantic-search-model-v1-3")
|
| 128 |
+
# Run inference
|
| 129 |
+
sentences = [
|
| 130 |
+
'perubahan nilai tukar petani bulan mei 2017',
|
| 131 |
+
'Perkembangan Nilai Tukar Petani Mei 2017',
|
| 132 |
+
'Statistik Restoran/Rumah Makan Tahun 2014',
|
| 133 |
+
]
|
| 134 |
+
embeddings = model.encode(sentences)
|
| 135 |
+
print(embeddings.shape)
|
| 136 |
+
# [3, 768]
|
| 137 |
+
|
| 138 |
+
# Get the similarity scores for the embeddings
|
| 139 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 140 |
+
print(similarities.shape)
|
| 141 |
+
# [3, 3]
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
<!--
|
| 145 |
+
### Direct Usage (Transformers)
|
| 146 |
+
|
| 147 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 148 |
+
|
| 149 |
+
</details>
|
| 150 |
+
-->
|
| 151 |
+
|
| 152 |
+
<!--
|
| 153 |
+
### Downstream Usage (Sentence Transformers)
|
| 154 |
+
|
| 155 |
+
You can finetune this model on your own dataset.
|
| 156 |
+
|
| 157 |
+
<details><summary>Click to expand</summary>
|
| 158 |
+
|
| 159 |
+
</details>
|
| 160 |
+
-->
|
| 161 |
+
|
| 162 |
+
<!--
|
| 163 |
+
### Out-of-Scope Use
|
| 164 |
+
|
| 165 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 166 |
+
-->
|
| 167 |
+
|
| 168 |
+
## Evaluation
|
| 169 |
+
|
| 170 |
+
### Metrics
|
| 171 |
+
|
| 172 |
+
#### Semantic Similarity
|
| 173 |
+
|
| 174 |
+
* Datasets: `allstats-semantic-search-v1-3-dev` and `allstat-semantic-search-v1-3-test`
|
| 175 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 176 |
+
|
| 177 |
+
| Metric | allstats-semantic-search-v1-3-dev | allstat-semantic-search-v1-3-test |
|
| 178 |
+
|:--------------------|:----------------------------------|:----------------------------------|
|
| 179 |
+
| pearson_cosine | 0.9956 | 0.9955 |
|
| 180 |
+
| **spearman_cosine** | **0.9588** | **0.9583** |
|
| 181 |
+
|
| 182 |
+
<!--
|
| 183 |
+
## Bias, Risks and Limitations
|
| 184 |
+
|
| 185 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 186 |
+
-->
|
| 187 |
+
|
| 188 |
+
<!--
|
| 189 |
+
### Recommendations
|
| 190 |
+
|
| 191 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 192 |
+
-->
|
| 193 |
+
|
| 194 |
+
## Training Details
|
| 195 |
+
|
| 196 |
+
### Training Dataset
|
| 197 |
+
|
| 198 |
+
#### allstats-semantic-search-synthetic-dataset-v1
|
| 199 |
+
|
| 200 |
+
* Dataset: [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) at [b13c0a7](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1/tree/b13c0a7412396a836cfbb887e140f183f3a6d65e)
|
| 201 |
+
* Size: 212,940 training samples
|
| 202 |
+
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
|
| 203 |
+
* Approximate statistics based on the first 1000 samples:
|
| 204 |
+
| | query | doc | label |
|
| 205 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 206 |
+
| type | string | string | float |
|
| 207 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 11.46 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.47 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.05</li></ul> |
|
| 208 |
+
* Samples:
|
| 209 |
+
| query | doc | label |
|
| 210 |
+
|:---------------------------------------------------------------|:-----------------------------------------------------------------------|:------------------|
|
| 211 |
+
| <code>aDta industri besar dan sedang Indonesia 2008</code> | <code>Statistik Industri Besar dan Sedang Indonesia 2008</code> | <code>0.9</code> |
|
| 212 |
+
| <code>profil bisnis konstruksi individu jawa barat 2022</code> | <code>Statistik Industri Manufaktur Indonesia 2015 - Bahan Baku</code> | <code>0.15</code> |
|
| 213 |
+
| <code>data statistik ekonomi indonesia</code> | <code>Nilai Tukar Valuta Asing di Indonesia 2014</code> | <code>0.08</code> |
|
| 214 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
| 215 |
+
```json
|
| 216 |
+
{
|
| 217 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
| 218 |
+
}
|
| 219 |
+
```
|
| 220 |
+
|
| 221 |
+
### Evaluation Dataset
|
| 222 |
+
|
| 223 |
+
#### allstats-semantic-search-synthetic-dataset-v1
|
| 224 |
+
|
| 225 |
+
* Dataset: [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) at [b13c0a7](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1/tree/b13c0a7412396a836cfbb887e140f183f3a6d65e)
|
| 226 |
+
* Size: 26,618 evaluation samples
|
| 227 |
+
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
|
| 228 |
+
* Approximate statistics based on the first 1000 samples:
|
| 229 |
+
| | query | doc | label |
|
| 230 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 231 |
+
| type | string | string | float |
|
| 232 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 11.38 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.63 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> |
|
| 233 |
+
* Samples:
|
| 234 |
+
| query | doc | label |
|
| 235 |
+
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------|:------------------|
|
| 236 |
+
| <code>tahun berapa ekspor naik 2,37% dan impor naik 30,30%?</code> | <code>Bulan November 2006 Ekspor Naik 2,37 % dan Impor Naik 30,30 %</code> | <code>1.0</code> |
|
| 237 |
+
| <code>Berapa produksi padi pada tahun 2023?</code> | <code>Produksi padi tahun lainnya</code> | <code>0.0</code> |
|
| 238 |
+
| <code>data statistik solus per aqua 2015</code> | <code>Statistik Solus Per Aqua (SPA) 2015</code> | <code>0.97</code> |
|
| 239 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
| 240 |
+
```json
|
| 241 |
+
{
|
| 242 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
| 243 |
+
}
|
| 244 |
+
```
|
| 245 |
+
|
| 246 |
+
### Training Hyperparameters
|
| 247 |
+
#### Non-Default Hyperparameters
|
| 248 |
+
|
| 249 |
+
- `eval_strategy`: steps
|
| 250 |
+
- `per_device_train_batch_size`: 32
|
| 251 |
+
- `per_device_eval_batch_size`: 32
|
| 252 |
+
- `num_train_epochs`: 12
|
| 253 |
+
- `warmup_ratio`: 0.1
|
| 254 |
+
- `fp16`: True
|
| 255 |
+
|
| 256 |
+
#### All Hyperparameters
|
| 257 |
+
<details><summary>Click to expand</summary>
|
| 258 |
+
|
| 259 |
+
- `overwrite_output_dir`: False
|
| 260 |
+
- `do_predict`: False
|
| 261 |
+
- `eval_strategy`: steps
|
| 262 |
+
- `prediction_loss_only`: True
|
| 263 |
+
- `per_device_train_batch_size`: 32
|
| 264 |
+
- `per_device_eval_batch_size`: 32
|
| 265 |
+
- `per_gpu_train_batch_size`: None
|
| 266 |
+
- `per_gpu_eval_batch_size`: None
|
| 267 |
+
- `gradient_accumulation_steps`: 1
|
| 268 |
+
- `eval_accumulation_steps`: None
|
| 269 |
+
- `torch_empty_cache_steps`: None
|
| 270 |
+
- `learning_rate`: 5e-05
|
| 271 |
+
- `weight_decay`: 0.0
|
| 272 |
+
- `adam_beta1`: 0.9
|
| 273 |
+
- `adam_beta2`: 0.999
|
| 274 |
+
- `adam_epsilon`: 1e-08
|
| 275 |
+
- `max_grad_norm`: 1.0
|
| 276 |
+
- `num_train_epochs`: 12
|
| 277 |
+
- `max_steps`: -1
|
| 278 |
+
- `lr_scheduler_type`: linear
|
| 279 |
+
- `lr_scheduler_kwargs`: {}
|
| 280 |
+
- `warmup_ratio`: 0.1
|
| 281 |
+
- `warmup_steps`: 0
|
| 282 |
+
- `log_level`: passive
|
| 283 |
+
- `log_level_replica`: warning
|
| 284 |
+
- `log_on_each_node`: True
|
| 285 |
+
- `logging_nan_inf_filter`: True
|
| 286 |
+
- `save_safetensors`: True
|
| 287 |
+
- `save_on_each_node`: False
|
| 288 |
+
- `save_only_model`: False
|
| 289 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 290 |
+
- `no_cuda`: False
|
| 291 |
+
- `use_cpu`: False
|
| 292 |
+
- `use_mps_device`: False
|
| 293 |
+
- `seed`: 42
|
| 294 |
+
- `data_seed`: None
|
| 295 |
+
- `jit_mode_eval`: False
|
| 296 |
+
- `use_ipex`: False
|
| 297 |
+
- `bf16`: False
|
| 298 |
+
- `fp16`: True
|
| 299 |
+
- `fp16_opt_level`: O1
|
| 300 |
+
- `half_precision_backend`: auto
|
| 301 |
+
- `bf16_full_eval`: False
|
| 302 |
+
- `fp16_full_eval`: False
|
| 303 |
+
- `tf32`: None
|
| 304 |
+
- `local_rank`: 0
|
| 305 |
+
- `ddp_backend`: None
|
| 306 |
+
- `tpu_num_cores`: None
|
| 307 |
+
- `tpu_metrics_debug`: False
|
| 308 |
+
- `debug`: []
|
| 309 |
+
- `dataloader_drop_last`: False
|
| 310 |
+
- `dataloader_num_workers`: 0
|
| 311 |
+
- `dataloader_prefetch_factor`: None
|
| 312 |
+
- `past_index`: -1
|
| 313 |
+
- `disable_tqdm`: False
|
| 314 |
+
- `remove_unused_columns`: True
|
| 315 |
+
- `label_names`: None
|
| 316 |
+
- `load_best_model_at_end`: False
|
| 317 |
+
- `ignore_data_skip`: False
|
| 318 |
+
- `fsdp`: []
|
| 319 |
+
- `fsdp_min_num_params`: 0
|
| 320 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 321 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 322 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 323 |
+
- `deepspeed`: None
|
| 324 |
+
- `label_smoothing_factor`: 0.0
|
| 325 |
+
- `optim`: adamw_torch
|
| 326 |
+
- `optim_args`: None
|
| 327 |
+
- `adafactor`: False
|
| 328 |
+
- `group_by_length`: False
|
| 329 |
+
- `length_column_name`: length
|
| 330 |
+
- `ddp_find_unused_parameters`: None
|
| 331 |
+
- `ddp_bucket_cap_mb`: None
|
| 332 |
+
- `ddp_broadcast_buffers`: False
|
| 333 |
+
- `dataloader_pin_memory`: True
|
| 334 |
+
- `dataloader_persistent_workers`: False
|
| 335 |
+
- `skip_memory_metrics`: True
|
| 336 |
+
- `use_legacy_prediction_loop`: False
|
| 337 |
+
- `push_to_hub`: False
|
| 338 |
+
- `resume_from_checkpoint`: None
|
| 339 |
+
- `hub_model_id`: None
|
| 340 |
+
- `hub_strategy`: every_save
|
| 341 |
+
- `hub_private_repo`: None
|
| 342 |
+
- `hub_always_push`: False
|
| 343 |
+
- `gradient_checkpointing`: False
|
| 344 |
+
- `gradient_checkpointing_kwargs`: None
|
| 345 |
+
- `include_inputs_for_metrics`: False
|
| 346 |
+
- `include_for_metrics`: []
|
| 347 |
+
- `eval_do_concat_batches`: True
|
| 348 |
+
- `fp16_backend`: auto
|
| 349 |
+
- `push_to_hub_model_id`: None
|
| 350 |
+
- `push_to_hub_organization`: None
|
| 351 |
+
- `mp_parameters`:
|
| 352 |
+
- `auto_find_batch_size`: False
|
| 353 |
+
- `full_determinism`: False
|
| 354 |
+
- `torchdynamo`: None
|
| 355 |
+
- `ray_scope`: last
|
| 356 |
+
- `ddp_timeout`: 1800
|
| 357 |
+
- `torch_compile`: False
|
| 358 |
+
- `torch_compile_backend`: None
|
| 359 |
+
- `torch_compile_mode`: None
|
| 360 |
+
- `dispatch_batches`: None
|
| 361 |
+
- `split_batches`: None
|
| 362 |
+
- `include_tokens_per_second`: False
|
| 363 |
+
- `include_num_input_tokens_seen`: False
|
| 364 |
+
- `neftune_noise_alpha`: None
|
| 365 |
+
- `optim_target_modules`: None
|
| 366 |
+
- `batch_eval_metrics`: False
|
| 367 |
+
- `eval_on_start`: False
|
| 368 |
+
- `use_liger_kernel`: False
|
| 369 |
+
- `eval_use_gather_object`: False
|
| 370 |
+
- `average_tokens_across_devices`: False
|
| 371 |
+
- `prompts`: None
|
| 372 |
+
- `batch_sampler`: batch_sampler
|
| 373 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 374 |
+
|
| 375 |
+
</details>
|
| 376 |
+
|
| 377 |
+
### Training Logs
|
| 378 |
+
<details><summary>Click to expand</summary>
|
| 379 |
+
|
| 380 |
+
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-v1-3-dev_spearman_cosine | allstat-semantic-search-v1-3-test_spearman_cosine |
|
| 381 |
+
|:-------:|:-----:|:-------------:|:---------------:|:-------------------------------------------------:|:-------------------------------------------------:|
|
| 382 |
+
| 0.0751 | 500 | 0.0653 | 0.0400 | 0.7035 | - |
|
| 383 |
+
| 0.1503 | 1000 | 0.0361 | 0.0296 | 0.7310 | - |
|
| 384 |
+
| 0.2254 | 1500 | 0.0278 | 0.0226 | 0.7669 | - |
|
| 385 |
+
| 0.3005 | 2000 | 0.0226 | 0.0195 | 0.7748 | - |
|
| 386 |
+
| 0.3757 | 2500 | 0.0208 | 0.0183 | 0.7769 | - |
|
| 387 |
+
| 0.4508 | 3000 | 0.0184 | 0.0172 | 0.7994 | - |
|
| 388 |
+
| 0.5259 | 3500 | 0.0179 | 0.0159 | 0.7931 | - |
|
| 389 |
+
| 0.6011 | 4000 | 0.0159 | 0.0155 | 0.7966 | - |
|
| 390 |
+
| 0.6762 | 4500 | 0.0161 | 0.0150 | 0.8047 | - |
|
| 391 |
+
| 0.7513 | 5000 | 0.0163 | 0.0153 | 0.7910 | - |
|
| 392 |
+
| 0.8264 | 5500 | 0.0158 | 0.0155 | 0.7956 | - |
|
| 393 |
+
| 0.9016 | 6000 | 0.0149 | 0.0141 | 0.8148 | - |
|
| 394 |
+
| 0.9767 | 6500 | 0.0149 | 0.0145 | 0.8287 | - |
|
| 395 |
+
| 1.0518 | 7000 | 0.0148 | 0.0150 | 0.7933 | - |
|
| 396 |
+
| 1.1270 | 7500 | 0.0131 | 0.0136 | 0.8083 | - |
|
| 397 |
+
| 1.2021 | 8000 | 0.0124 | 0.0131 | 0.8173 | - |
|
| 398 |
+
| 1.2772 | 8500 | 0.0133 | 0.0130 | 0.8117 | - |
|
| 399 |
+
| 1.3524 | 9000 | 0.012 | 0.0126 | 0.8259 | - |
|
| 400 |
+
| 1.4275 | 9500 | 0.0119 | 0.0120 | 0.8178 | - |
|
| 401 |
+
| 1.5026 | 10000 | 0.0116 | 0.0118 | 0.8332 | - |
|
| 402 |
+
| 1.5778 | 10500 | 0.0132 | 0.0123 | 0.8108 | - |
|
| 403 |
+
| 1.6529 | 11000 | 0.0114 | 0.0111 | 0.8365 | - |
|
| 404 |
+
| 1.7280 | 11500 | 0.0105 | 0.0109 | 0.8235 | - |
|
| 405 |
+
| 1.8032 | 12000 | 0.0107 | 0.0105 | 0.8445 | - |
|
| 406 |
+
| 1.8783 | 12500 | 0.0106 | 0.0101 | 0.8330 | - |
|
| 407 |
+
| 1.9534 | 13000 | 0.0095 | 0.0096 | 0.8437 | - |
|
| 408 |
+
| 2.0285 | 13500 | 0.0093 | 0.0094 | 0.8417 | - |
|
| 409 |
+
| 2.1037 | 14000 | 0.0079 | 0.0093 | 0.8485 | - |
|
| 410 |
+
| 2.1788 | 14500 | 0.008 | 0.0089 | 0.8422 | - |
|
| 411 |
+
| 2.2539 | 15000 | 0.0081 | 0.0086 | 0.8485 | - |
|
| 412 |
+
| 2.3291 | 15500 | 0.008 | 0.0084 | 0.8530 | - |
|
| 413 |
+
| 2.4042 | 16000 | 0.007 | 0.0084 | 0.8597 | - |
|
| 414 |
+
| 2.4793 | 16500 | 0.0081 | 0.0087 | 0.8499 | - |
|
| 415 |
+
| 2.5545 | 17000 | 0.0078 | 0.0078 | 0.8577 | - |
|
| 416 |
+
| 2.6296 | 17500 | 0.007 | 0.0080 | 0.8559 | - |
|
| 417 |
+
| 2.7047 | 18000 | 0.0072 | 0.0078 | 0.8569 | - |
|
| 418 |
+
| 2.7799 | 18500 | 0.0069 | 0.0079 | 0.8579 | - |
|
| 419 |
+
| 2.8550 | 19000 | 0.0064 | 0.0072 | 0.8693 | - |
|
| 420 |
+
| 2.9301 | 19500 | 0.0064 | 0.0070 | 0.8747 | - |
|
| 421 |
+
| 3.0053 | 20000 | 0.0061 | 0.0068 | 0.8757 | - |
|
| 422 |
+
| 3.0804 | 20500 | 0.0052 | 0.0069 | 0.8727 | - |
|
| 423 |
+
| 3.1555 | 21000 | 0.005 | 0.0067 | 0.8734 | - |
|
| 424 |
+
| 3.2307 | 21500 | 0.0054 | 0.0065 | 0.8727 | - |
|
| 425 |
+
| 3.3058 | 22000 | 0.0058 | 0.0070 | 0.8715 | - |
|
| 426 |
+
| 3.3809 | 22500 | 0.0056 | 0.0066 | 0.8724 | - |
|
| 427 |
+
| 3.4560 | 23000 | 0.0056 | 0.0070 | 0.8740 | - |
|
| 428 |
+
| 3.5312 | 23500 | 0.0054 | 0.0060 | 0.8775 | - |
|
| 429 |
+
| 3.6063 | 24000 | 0.0051 | 0.0062 | 0.8746 | - |
|
| 430 |
+
| 3.6814 | 24500 | 0.0047 | 0.0060 | 0.8765 | - |
|
| 431 |
+
| 3.7566 | 25000 | 0.0051 | 0.0067 | 0.8783 | - |
|
| 432 |
+
| 3.8317 | 25500 | 0.0048 | 0.0058 | 0.8824 | - |
|
| 433 |
+
| 3.9068 | 26000 | 0.0048 | 0.0059 | 0.8862 | - |
|
| 434 |
+
| 3.9820 | 26500 | 0.005 | 0.0056 | 0.8853 | - |
|
| 435 |
+
| 4.0571 | 27000 | 0.0042 | 0.0053 | 0.8868 | - |
|
| 436 |
+
| 4.1322 | 27500 | 0.0036 | 0.0056 | 0.8893 | - |
|
| 437 |
+
| 4.2074 | 28000 | 0.0041 | 0.0052 | 0.8954 | - |
|
| 438 |
+
| 4.2825 | 28500 | 0.0041 | 0.0050 | 0.8943 | - |
|
| 439 |
+
| 4.3576 | 29000 | 0.0036 | 0.0050 | 0.8890 | - |
|
| 440 |
+
| 4.4328 | 29500 | 0.0036 | 0.0046 | 0.8990 | - |
|
| 441 |
+
| 4.5079 | 30000 | 0.0038 | 0.0051 | 0.8934 | - |
|
| 442 |
+
| 4.5830 | 30500 | 0.0037 | 0.0049 | 0.9011 | - |
|
| 443 |
+
| 4.6582 | 31000 | 0.0036 | 0.0049 | 0.9000 | - |
|
| 444 |
+
| 4.7333 | 31500 | 0.0041 | 0.0052 | 0.8938 | - |
|
| 445 |
+
| 4.8084 | 32000 | 0.004 | 0.0049 | 0.8971 | - |
|
| 446 |
+
| 4.8835 | 32500 | 0.0038 | 0.0043 | 0.9023 | - |
|
| 447 |
+
| 4.9587 | 33000 | 0.0036 | 0.0044 | 0.9006 | - |
|
| 448 |
+
| 5.0338 | 33500 | 0.0032 | 0.0043 | 0.9042 | - |
|
| 449 |
+
| 5.1089 | 34000 | 0.0031 | 0.0042 | 0.9054 | - |
|
| 450 |
+
| 5.1841 | 34500 | 0.0028 | 0.0042 | 0.9052 | - |
|
| 451 |
+
| 5.2592 | 35000 | 0.0028 | 0.0043 | 0.9065 | - |
|
| 452 |
+
| 5.3343 | 35500 | 0.003 | 0.0041 | 0.9093 | - |
|
| 453 |
+
| 5.4095 | 36000 | 0.0029 | 0.0042 | 0.9084 | - |
|
| 454 |
+
| 5.4846 | 36500 | 0.0029 | 0.0044 | 0.9078 | - |
|
| 455 |
+
| 5.5597 | 37000 | 0.0027 | 0.0043 | 0.9062 | - |
|
| 456 |
+
| 5.6349 | 37500 | 0.003 | 0.0039 | 0.9101 | - |
|
| 457 |
+
| 5.7100 | 38000 | 0.0027 | 0.0041 | 0.9092 | - |
|
| 458 |
+
| 5.7851 | 38500 | 0.0025 | 0.0039 | 0.9140 | - |
|
| 459 |
+
| 5.8603 | 39000 | 0.0027 | 0.0037 | 0.9138 | - |
|
| 460 |
+
| 5.9354 | 39500 | 0.0027 | 0.0037 | 0.9137 | - |
|
| 461 |
+
| 6.0105 | 40000 | 0.0027 | 0.0036 | 0.9162 | - |
|
| 462 |
+
| 6.0856 | 40500 | 0.002 | 0.0035 | 0.9209 | - |
|
| 463 |
+
| 6.1608 | 41000 | 0.0021 | 0.0037 | 0.9180 | - |
|
| 464 |
+
| 6.2359 | 41500 | 0.0023 | 0.0036 | 0.9183 | - |
|
| 465 |
+
| 6.3110 | 42000 | 0.0024 | 0.0035 | 0.9218 | - |
|
| 466 |
+
| 6.3862 | 42500 | 0.002 | 0.0033 | 0.9216 | - |
|
| 467 |
+
| 6.4613 | 43000 | 0.0024 | 0.0035 | 0.9220 | - |
|
| 468 |
+
| 6.5364 | 43500 | 0.0018 | 0.0034 | 0.9232 | - |
|
| 469 |
+
| 6.6116 | 44000 | 0.0021 | 0.0033 | 0.9236 | - |
|
| 470 |
+
| 6.6867 | 44500 | 0.0021 | 0.0035 | 0.9225 | - |
|
| 471 |
+
| 6.7618 | 45000 | 0.0027 | 0.0031 | 0.9227 | - |
|
| 472 |
+
| 6.8370 | 45500 | 0.0019 | 0.0032 | 0.9242 | - |
|
| 473 |
+
| 6.9121 | 46000 | 0.0022 | 0.0033 | 0.9224 | - |
|
| 474 |
+
| 6.9872 | 46500 | 0.0022 | 0.0030 | 0.9252 | - |
|
| 475 |
+
| 7.0624 | 47000 | 0.0017 | 0.0029 | 0.9294 | - |
|
| 476 |
+
| 7.1375 | 47500 | 0.0014 | 0.0028 | 0.9304 | - |
|
| 477 |
+
| 7.2126 | 48000 | 0.0015 | 0.0028 | 0.9324 | - |
|
| 478 |
+
| 7.2878 | 48500 | 0.0014 | 0.0030 | 0.9313 | - |
|
| 479 |
+
| 7.3629 | 49000 | 0.0015 | 0.0029 | 0.9333 | - |
|
| 480 |
+
| 7.4380 | 49500 | 0.0015 | 0.0028 | 0.9342 | - |
|
| 481 |
+
| 7.5131 | 50000 | 0.0018 | 0.0030 | 0.9261 | - |
|
| 482 |
+
| 7.5883 | 50500 | 0.0016 | 0.0030 | 0.9329 | - |
|
| 483 |
+
| 7.6634 | 51000 | 0.0019 | 0.0026 | 0.9334 | - |
|
| 484 |
+
| 7.7385 | 51500 | 0.0018 | 0.0029 | 0.9336 | - |
|
| 485 |
+
| 7.8137 | 52000 | 0.0016 | 0.0026 | 0.9353 | - |
|
| 486 |
+
| 7.8888 | 52500 | 0.0016 | 0.0026 | 0.9351 | - |
|
| 487 |
+
| 7.9639 | 53000 | 0.0017 | 0.0024 | 0.9356 | - |
|
| 488 |
+
| 8.0391 | 53500 | 0.0013 | 0.0023 | 0.9396 | - |
|
| 489 |
+
| 8.1142 | 54000 | 0.0012 | 0.0024 | 0.9390 | - |
|
| 490 |
+
| 8.1893 | 54500 | 0.001 | 0.0024 | 0.9421 | - |
|
| 491 |
+
| 8.2645 | 55000 | 0.0012 | 0.0024 | 0.9406 | - |
|
| 492 |
+
| 8.3396 | 55500 | 0.0012 | 0.0023 | 0.9407 | - |
|
| 493 |
+
| 8.4147 | 56000 | 0.0012 | 0.0024 | 0.9398 | - |
|
| 494 |
+
| 8.4899 | 56500 | 0.0012 | 0.0024 | 0.9412 | - |
|
| 495 |
+
| 8.5650 | 57000 | 0.0014 | 0.0024 | 0.9397 | - |
|
| 496 |
+
| 8.6401 | 57500 | 0.0013 | 0.0023 | 0.9411 | - |
|
| 497 |
+
| 8.7153 | 58000 | 0.0013 | 0.0023 | 0.9418 | - |
|
| 498 |
+
| 8.7904 | 58500 | 0.0014 | 0.0022 | 0.9432 | - |
|
| 499 |
+
| 8.8655 | 59000 | 0.0011 | 0.0022 | 0.9448 | - |
|
| 500 |
+
| 8.9406 | 59500 | 0.0012 | 0.0022 | 0.9455 | - |
|
| 501 |
+
| 9.0158 | 60000 | 0.0012 | 0.0021 | 0.9453 | - |
|
| 502 |
+
| 9.0909 | 60500 | 0.0009 | 0.0021 | 0.9461 | - |
|
| 503 |
+
| 9.1660 | 61000 | 0.0009 | 0.0021 | 0.9465 | - |
|
| 504 |
+
| 9.2412 | 61500 | 0.0009 | 0.0021 | 0.9471 | - |
|
| 505 |
+
| 9.3163 | 62000 | 0.0009 | 0.0021 | 0.9477 | - |
|
| 506 |
+
| 9.3914 | 62500 | 0.0008 | 0.0020 | 0.9482 | - |
|
| 507 |
+
| 9.4666 | 63000 | 0.0012 | 0.0020 | 0.9478 | - |
|
| 508 |
+
| 9.5417 | 63500 | 0.0009 | 0.0020 | 0.9479 | - |
|
| 509 |
+
| 9.6168 | 64000 | 0.0009 | 0.0020 | 0.9485 | - |
|
| 510 |
+
| 9.6920 | 64500 | 0.0011 | 0.0020 | 0.9492 | - |
|
| 511 |
+
| 9.7671 | 65000 | 0.0008 | 0.0019 | 0.9497 | - |
|
| 512 |
+
| 9.8422 | 65500 | 0.001 | 0.0019 | 0.9504 | - |
|
| 513 |
+
| 9.9174 | 66000 | 0.0009 | 0.0019 | 0.9518 | - |
|
| 514 |
+
| 9.9925 | 66500 | 0.0009 | 0.0019 | 0.9510 | - |
|
| 515 |
+
| 10.0676 | 67000 | 0.0008 | 0.0018 | 0.9517 | - |
|
| 516 |
+
| 10.1427 | 67500 | 0.0007 | 0.0018 | 0.9524 | - |
|
| 517 |
+
| 10.2179 | 68000 | 0.0007 | 0.0018 | 0.9521 | - |
|
| 518 |
+
| 10.2930 | 68500 | 0.0008 | 0.0019 | 0.9526 | - |
|
| 519 |
+
| 10.3681 | 69000 | 0.0007 | 0.0019 | 0.9529 | - |
|
| 520 |
+
| 10.4433 | 69500 | 0.0008 | 0.0018 | 0.9541 | - |
|
| 521 |
+
| 10.5184 | 70000 | 0.0007 | 0.0017 | 0.9551 | - |
|
| 522 |
+
| 10.5935 | 70500 | 0.0007 | 0.0018 | 0.9550 | - |
|
| 523 |
+
| 10.6687 | 71000 | 0.0008 | 0.0017 | 0.9554 | - |
|
| 524 |
+
| 10.7438 | 71500 | 0.0007 | 0.0017 | 0.9558 | - |
|
| 525 |
+
| 10.8189 | 72000 | 0.0007 | 0.0018 | 0.9558 | - |
|
| 526 |
+
| 10.8941 | 72500 | 0.0007 | 0.0018 | 0.9562 | - |
|
| 527 |
+
| 10.9692 | 73000 | 0.0009 | 0.0017 | 0.9559 | - |
|
| 528 |
+
| 11.0443 | 73500 | 0.0005 | 0.0017 | 0.9571 | - |
|
| 529 |
+
| 11.1195 | 74000 | 0.0006 | 0.0017 | 0.9570 | - |
|
| 530 |
+
| 11.1946 | 74500 | 0.0005 | 0.0017 | 0.9573 | - |
|
| 531 |
+
| 11.2697 | 75000 | 0.0005 | 0.0017 | 0.9574 | - |
|
| 532 |
+
| 11.3449 | 75500 | 0.0006 | 0.0017 | 0.9576 | - |
|
| 533 |
+
| 11.4200 | 76000 | 0.0006 | 0.0017 | 0.9577 | - |
|
| 534 |
+
| 11.4951 | 76500 | 0.0006 | 0.0017 | 0.9577 | - |
|
| 535 |
+
| 11.5702 | 77000 | 0.0005 | 0.0016 | 0.9582 | - |
|
| 536 |
+
| 11.6454 | 77500 | 0.0006 | 0.0017 | 0.9583 | - |
|
| 537 |
+
| 11.7205 | 78000 | 0.0005 | 0.0016 | 0.9584 | - |
|
| 538 |
+
| 11.7956 | 78500 | 0.0005 | 0.0016 | 0.9587 | - |
|
| 539 |
+
| 11.8708 | 79000 | 0.0005 | 0.0016 | 0.9588 | - |
|
| 540 |
+
| 11.9459 | 79500 | 0.0005 | 0.0016 | 0.9588 | - |
|
| 541 |
+
| 12.0 | 79860 | - | - | - | 0.9583 |
|
| 542 |
+
|
| 543 |
+
</details>
|
| 544 |
+
|
| 545 |
+
### Framework Versions
|
| 546 |
+
- Python: 3.10.12
|
| 547 |
+
- Sentence Transformers: 3.3.1
|
| 548 |
+
- Transformers: 4.47.1
|
| 549 |
+
- PyTorch: 2.2.2+cu121
|
| 550 |
+
- Accelerate: 1.2.1
|
| 551 |
+
- Datasets: 3.2.0
|
| 552 |
+
- Tokenizers: 0.21.0
|
| 553 |
+
|
| 554 |
+
## Citation
|
| 555 |
+
|
| 556 |
+
### BibTeX
|
| 557 |
+
|
| 558 |
+
#### Sentence Transformers
|
| 559 |
+
```bibtex
|
| 560 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 561 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 562 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 563 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 564 |
+
month = "11",
|
| 565 |
+
year = "2019",
|
| 566 |
+
publisher = "Association for Computational Linguistics",
|
| 567 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 568 |
+
}
|
| 569 |
+
```
|
| 570 |
+
|
| 571 |
+
<!--
|
| 572 |
+
## Glossary
|
| 573 |
+
|
| 574 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 575 |
+
-->
|
| 576 |
+
|
| 577 |
+
<!--
|
| 578 |
+
## Model Card Authors
|
| 579 |
+
|
| 580 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 581 |
+
-->
|
| 582 |
+
|
| 583 |
+
<!--
|
| 584 |
+
## Model Card Contact
|
| 585 |
+
|
| 586 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 587 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"XLMRobertaModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"gradient_checkpointing": false,
|
| 11 |
+
"hidden_act": "gelu",
|
| 12 |
+
"hidden_dropout_prob": 0.1,
|
| 13 |
+
"hidden_size": 768,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 3072,
|
| 16 |
+
"layer_norm_eps": 1e-05,
|
| 17 |
+
"max_position_embeddings": 514,
|
| 18 |
+
"model_type": "xlm-roberta",
|
| 19 |
+
"num_attention_heads": 12,
|
| 20 |
+
"num_hidden_layers": 12,
|
| 21 |
+
"output_past": true,
|
| 22 |
+
"pad_token_id": 1,
|
| 23 |
+
"position_embedding_type": "absolute",
|
| 24 |
+
"torch_dtype": "float32",
|
| 25 |
+
"transformers_version": "4.47.1",
|
| 26 |
+
"type_vocab_size": 1,
|
| 27 |
+
"use_cache": true,
|
| 28 |
+
"vocab_size": 250002
|
| 29 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.3.1",
|
| 4 |
+
"transformers": "4.47.1",
|
| 5 |
+
"pytorch": "2.2.2+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:584fa35e056a7838286e58289f1257192d84cd7ffec48c0bf2eb2c1dc14ef8cf
|
| 3 |
+
size 1112197096
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 128,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
| 3 |
+
size 17082987
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": false,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"max_length": 128,
|
| 51 |
+
"model_max_length": 128,
|
| 52 |
+
"pad_to_multiple_of": null,
|
| 53 |
+
"pad_token": "<pad>",
|
| 54 |
+
"pad_token_type_id": 0,
|
| 55 |
+
"padding_side": "right",
|
| 56 |
+
"sep_token": "</s>",
|
| 57 |
+
"stride": 0,
|
| 58 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 59 |
+
"truncation_side": "right",
|
| 60 |
+
"truncation_strategy": "longest_first",
|
| 61 |
+
"unk_token": "<unk>"
|
| 62 |
+
}
|