Upload PPO LunarLander-v2 trained agent
Browse files- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 182.89 +/- 52.91
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2cab8fe5f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2cab8fe680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2cab8fe710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2cab8fe7a0>", "_build": "<function ActorCriticPolicy._build at 0x7f2cab8fe830>", "forward": "<function ActorCriticPolicy.forward at 0x7f2cab8fe8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2cab8fe950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2cab8fe9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2cab8fea70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2cab8feb00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2cab8feb90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2cab949a50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660022804.633833, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKayqb0UtIO6Lh07O0RQlbNbK6C6i+JUugAAgD8AAIA/2oWEvfj00z316vE8MQ5JvmcN+DtIxmG9AAAAAAAAAADApIk+w7lTP3lUFL4ADPK9Aa9WPk7aLb4AAAAAAAAAAO02AL7H9zI/bU32PCtNLb5u0bE8fqOlPQAAAAAAAAAAMy+tvEhvn7oeE647VQE4ODtoXTpTgCS3AACAPwAAgD+AoH29pDBqOJpQ0rpqqxq56ZWDOnoTrDkAAIA/AACAPxpKxr2jrg89OhQ2PDD8Yr0NQe09qOnnPAAAAAAAAAAAZr4ivn6mqz/Vwzq+fwV3vkOBKr2Gr2E9AAAAAAAAAADKj2e+riOruro4xToEdzA3j27lOtJm4bcAAIA/AACAP3Wvs74Z55c/lrD3vnyQk76rFJ6+QH2LPAAAAAAAAAAA+owXvoUbgjoXYMc79uoMuVAINLzrrQQ6AACAPwAAgD/AU1S+QctZP63B7r1n1Jm+Z0PDPHQgRDwAAAAAAAAAAMCsBT4nLnY/quZ0vtR4hb5knce9G0LPvAAAAAAAAAAAzYJMPPZcHLo4/IY7LUAEtjLIbTpKjJq6AACAPwAAgD8A0r88KWC8P7uGdz0UVRC+sOHEPVNupT0AAAAAAAAAAJoZNDnhOI66sO/NOaUYXbX2d2E6Sq/tuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI41MAjGd1YECUhpRSlIwBbJRN6AOMAXSUR0B51U67ulXSdX2UKGgGaAloD0MIkUJZ+HryYUCUhpRSlGgVTegDaBZHQHnv+oYNy5t1fZQoaAZoCWgPQwjh7UEIyIZcQJSGlFKUaBVN6ANoFkdAej//RVp9JHV9lChoBmgJaA9DCKPmq+TjT2BAlIaUUpRoFU3oA2gWR0B6Y+V+qioLdX2UKGgGaAloD0MIYd7jTBPyPsCUhpRSlGgVTYoBaBZHQHpt6ufVZs91fZQoaAZoCWgPQwhPeAlOfUZWQJSGlFKUaBVN6ANoFkdAem9nzg/C7HV9lChoBmgJaA9DCOvFUE60fmFAlIaUUpRoFU3oA2gWR0B6gQ5o4+8odX2UKGgGaAloD0MIC2MLQQ6OTkCUhpRSlGgVTegDaBZHQHqUwX/HYHx1fZQoaAZoCWgPQwi14EVfQRRdQJSGlFKUaBVN6ANoFkdAeqBOgQHzH3V9lChoBmgJaA9DCAjJAiZwb1tAlIaUUpRoFU3oA2gWR0B6rhhAnlXBdX2UKGgGaAloD0MIcY46Oq4HWUCUhpRSlGgVTegDaBZHQHsBnRCx/ut1fZQoaAZoCWgPQwgq4nSSrVdUQJSGlFKUaBVN6ANoFkdAewz+vhZQpHV9lChoBmgJaA9DCDyHMlTFt11AlIaUUpRoFU3oA2gWR0B7FhOh0yP/dX2UKGgGaAloD0MIPL1SliFkU0CUhpRSlGgVTegDaBZHQHs5HrleWv91fZQoaAZoCWgPQwjXoC+9/alSQJSGlFKUaBVN6ANoFkdAezkx8D0UXnV9lChoBmgJaA9DCDo7GRwlT1VAlIaUUpRoFU3oA2gWR0B7P4pb2USqdX2UKGgGaAloD0MINZpcjIG9VkCUhpRSlGgVTegDaBZHQHtwZ84Pwux1fZQoaAZoCWgPQwjiI2JKJM1cQJSGlFKUaBVN6ANoFkdAe55ZSvTw2HV9lChoBmgJaA9DCGTMXUvIuF9AlIaUUpRoFU3oA2gWR0B7753hXKbKdX2UKGgGaAloD0MIS5ARUOFQXECUhpRSlGgVTegDaBZHQHwTS6+WWyF1fZQoaAZoCWgPQwgXK2owDQlQQJSGlFKUaBVN6ANoFkdAfB1yKekHlnV9lChoBmgJaA9DCOnzUUZcjFRAlIaUUpRoFU3oA2gWR0B8HxaUzKs/dX2UKGgGaAloD0MIKPIk6RoeYECUhpRSlGgVTegDaBZHQHwvpn6Eal11fZQoaAZoCWgPQwhS1Jl7SExbQJSGlFKUaBVN6ANoFkdAfEJtcfNiY3V9lChoBmgJaA9DCCoaa39nG15AlIaUUpRoFU3oA2gWR0B8TaPgeii7dX2UKGgGaAloD0MI3/yGiQZIWUCUhpRSlGgVTegDaBZHQHxa6pDNQj51fZQoaAZoCWgPQwjfap24HPVdQJSGlFKUaBVN6ANoFkdAfGF0ngHeJ3V9lChoBmgJaA9DCFlqvd9o4V5AlIaUUpRoFU3oA2gWR0B8uCf4AS39dX2UKGgGaAloD0MI9tIUAU4gY0CUhpRSlGgVTegDaBZHQHy//5+H8CR1fZQoaAZoCWgPQwg4MSQnEzcQwJSGlFKUaBVNXQFoFkdAfM6A6+36RHV9lChoBmgJaA9DCO3T8ZiBU1VAlIaUUpRoFU3oA2gWR0B83U1fmcOLdX2UKGgGaAloD0MIy2Q4ns8QW0CUhpRSlGgVTegDaBZHQHzdWznied11fZQoaAZoCWgPQwg18Q7wpCJbQJSGlFKUaBVN6ANoFkdAfOJKdxyXD3V9lChoBmgJaA9DCID0TZoGMldAlIaUUpRoFU3oA2gWR0B8/td3Sro4dX2UKGgGaAloD0MIG6A01Ch/U0CUhpRSlGgVTegDaBZHQH0kuyeI2wV1fZQoaAZoCWgPQwhfJoqQusFHQJSGlFKUaBVNIwFoFkdAfSqLXtjTa3V9lChoBmgJaA9DCJ+Qnbexi1xAlIaUUpRoFU3oA2gWR0B9Z//0dzXCdX2UKGgGaAloD0MIzT/6Jk2hVkCUhpRSlGgVTegDaBZHQH2GblRxcVx1fZQoaAZoCWgPQwihuyTOCktiQJSGlFKUaBVN6ANoFkdAfZBQTmGM43V9lChoBmgJaA9DCB6Jl6dzzlxAlIaUUpRoFU3oA2gWR0B9oOEpRXOodX2UKGgGaAloD0MILhud81NrV0CUhpRSlGgVTegDaBZHQH2zR7NSqER1fZQoaAZoCWgPQwgUdlH0QDdiQJSGlFKUaBVN6ANoFkdAfb6dJJ5E+nV9lChoBmgJaA9DCA4WTtL8ul9AlIaUUpRoFU3oA2gWR0B9zHozN2TxdX2UKGgGaAloD0MIW+1hLxTsX0CUhpRSlGgVTegDaBZHQH3TecMEzO51fZQoaAZoCWgPQwhIcCNlix9WQJSGlFKUaBVN6ANoFkdAfivhkRSP2nV9lChoBmgJaA9DCPKVQErsqV5AlIaUUpRoFU3oA2gWR0B+NKknCwbEdX2UKGgGaAloD0MIwRw9fm+8V0CUhpRSlGgVTegDaBZHQH5FIptrKvF1fZQoaAZoCWgPQwj+mNamsddeQJSGlFKUaBVN6ANoFkdAflXJDVpblnV9lChoBmgJaA9DCJesinCTt1pAlIaUUpRoFU3oA2gWR0B+W6qioKlYdX2UKGgGaAloD0MIu38sRIfENkCUhpRSlGgVTTMBaBZHQH5j41DSgGt1fZQoaAZoCWgPQwhsdqT6zm1XQJSGlFKUaBVN6ANoFkdAfn4xPO6d2HV9lChoBmgJaA9DCBDOp45VRmBAlIaUUpRoFU3oA2gWR0B+qOKziS7odX2UKGgGaAloD0MIPfNy2H0AY0CUhpRSlGgVTegDaBZHQH6vS619fC11fZQoaAZoCWgPQwjv5T45CpFeQJSGlFKUaBVN6ANoFkdAfvIZezD4xnV9lChoBmgJaA9DCHV3nQ35pGFAlIaUUpRoFU3oA2gWR0B/E/PMSsbOdX2UKGgGaAloD0MI3H9kOnRVXECUhpRSlGgVTegDaBZHQH8e3KKYRd11fZQoaAZoCWgPQwjZsnxdhqZbQJSGlFKUaBVN6ANoFkdAfzDY4ACGOHV9lChoBmgJaA9DCODVcmcmf1lAlIaUUpRoFU3oA2gWR0B/Q/R1HOKPdX2UKGgGaAloD0MI1nH8UGnsXUCUhpRSlGgVTegDaBZHQH9fZHuqm0p1fZQoaAZoCWgPQwjrjVph+v4mwJSGlFKUaBVNTwFoFkdAf2bQQcxTKnV9lChoBmgJaA9DCL4Ts14MQFlAlIaUUpRoFU3oA2gWR0B/ZykgwGnodX2UKGgGaAloD0MIW7Iqwk08YECUhpRSlGgVTegDaBZHQH9zKJ/G2kV1fZQoaAZoCWgPQwhqSx3k9bQwwJSGlFKUaBVNCwFoFkdAf3bq46Oo53V9lChoBmgJaA9DCNk+5C3XmmFAlIaUUpRoFU3oA2gWR0B/yW9US7GvdX2UKGgGaAloD0MI/aGZJ9c1Y0CUhpRSlGgVTegDaBZHQH/Zt2TxG2F1fZQoaAZoCWgPQwg8F0Z6UVdFQJSGlFKUaBVN6ANoFkdAf+uapgkTpXV9lChoBmgJaA9DCNjyyvW2PlhAlIaUUpRoFU3oA2gWR0B/8epeeFtbdX2UKGgGaAloD0MIwXPv4ZKOXUCUhpRSlGgVTegDaBZHQH/6GL5ylvZ1fZQoaAZoCWgPQwi+Sj52F1RUQJSGlFKUaBVN6ANoFkdAgAm8VHnU2HV9lChoBmgJaA9DCDOID+z4H2BAlIaUUpRoFU3oA2gWR0CAHiiUxEfDdX2UKGgGaAloD0MIzH9Iv339TkCUhpRSlGgVTUwBaBZHQIAem5paibl1fZQoaAZoCWgPQwiC/61kxzxfQJSGlFKUaBVN6ANoFkdAgCEM7dSEUXV9lChoBmgJaA9DCPIGmPkO1FxAlIaUUpRoFU3oA2gWR0CATR4KQaJidX2UKGgGaAloD0MInx9GCI/xXECUhpRSlGgVTegDaBZHQIBbGokzGgl1fZQoaAZoCWgPQwhffqfJjHRcQJSGlFKUaBVN6ANoFkdAgGUAf+0gKXV9lChoBmgJaA9DCPON6J51f2BAlIaUUpRoFU3oA2gWR0CAcp22Xsw+dX2UKGgGaAloD0MI6nsNwXF2ZECUhpRSlGgVTegDaBZHQIB2NCgK4QV1fZQoaAZoCWgPQwhZorPMIh9bQJSGlFKUaBVN6ANoFkdAgHZcOTaCc3V9lChoBmgJaA9DCASSsG8nOllAlIaUUpRoFU3oA2gWR0CAe8tRNyo5dX2UKGgGaAloD0MI8KKvIM05W0CUhpRSlGgVTegDaBZHQIB9a5f+jud1fZQoaAZoCWgPQwgCEHf1KoxVQJSGlFKUaBVN6ANoFkdAgIAAuh9LH3V9lChoBmgJaA9DCD2CGylbbl1AlIaUUpRoFU3oA2gWR0CAtQI1tO2zdX2UKGgGaAloD0MIYmafxyizQECUhpRSlGgVTS4BaBZHQIC2Fu3trsV1fZQoaAZoCWgPQwjRzf5AOa9iQJSGlFKUaBVN6ANoFkdAgLeOwosqa3V9lChoBmgJaA9DCPshNlg4LWNAlIaUUpRoFU3oA2gWR0CAuw4BFNL2dX2UKGgGaAloD0MI3ZVdMDi8YkCUhpRSlGgVTegDaBZHQIDGaksSTQp1fZQoaAZoCWgPQwi2+BQA4x5hQJSGlFKUaBVN6ANoFkdAgNlby6MBIXV9lChoBmgJaA9DCFkTC3xFEVZAlIaUUpRoFU3oA2gWR0CA2dOfNA1OdX2UKGgGaAloD0MItBzooTa8Y0CUhpRSlGgVTegDaBZHQIDcNruYx+N1fZQoaAZoCWgPQwhVoYFYNk81wJSGlFKUaBVNOwFoFkdAgOew3HaN/HV9lChoBmgJaA9DCFQdcjPcAPC/lIaUUpRoFUv7aBZHQIEH5TXJ5mh1fZQoaAZoCWgPQwijIeNRKoRbQJSGlFKUaBVN6ANoFkdAgQ+vVVghKXV9lChoBmgJaA9DCNwSueAMQ2VAlIaUUpRoFU3oA2gWR0CBHoY/FBIGdX2UKGgGaAloD0MI1/Z2S3KsY0CUhpRSlGgVTegDaBZHQIE3Te2uxKR1fZQoaAZoCWgPQwgMsI9OXRknQJSGlFKUaBVNCgFoFkdAgTepnpSrHXV9lChoBmgJaA9DCJNVEW4yL1tAlIaUUpRoFU3oA2gWR0CBOxtShrWRdX2UKGgGaAloD0MIWmYRiq3SV0CUhpRSlGgVTegDaBZHQIE7RqqOtGN1fZQoaAZoCWgPQwjI0LGDSjtfQJSGlFKUaBVN6ANoFkdAgUDW4mTkhnV9lChoBmgJaA9DCJ/leXB3r2RAlIaUUpRoFU3oA2gWR0CBQmhJyyUtdX2UKGgGaAloD0MIrtnKS/7EWECUhpRSlGgVTegDaBZHQIFE3MlkYoB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3ae76fbecc09b88801474b3ad3af4cc90c4c1f4087d147c26aad7ae6380b215
|
3 |
+
size 147151
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2cab8fe5f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2cab8fe680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2cab8fe710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2cab8fe7a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2cab8fe830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2cab8fe8c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2cab8fe950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2cab8fe9e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2cab8fea70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2cab8feb00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2cab8feb90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f2cab949a50>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1660022804.633833,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKayqb0UtIO6Lh07O0RQlbNbK6C6i+JUugAAgD8AAIA/2oWEvfj00z316vE8MQ5JvmcN+DtIxmG9AAAAAAAAAADApIk+w7lTP3lUFL4ADPK9Aa9WPk7aLb4AAAAAAAAAAO02AL7H9zI/bU32PCtNLb5u0bE8fqOlPQAAAAAAAAAAMy+tvEhvn7oeE647VQE4ODtoXTpTgCS3AACAPwAAgD+AoH29pDBqOJpQ0rpqqxq56ZWDOnoTrDkAAIA/AACAPxpKxr2jrg89OhQ2PDD8Yr0NQe09qOnnPAAAAAAAAAAAZr4ivn6mqz/Vwzq+fwV3vkOBKr2Gr2E9AAAAAAAAAADKj2e+riOruro4xToEdzA3j27lOtJm4bcAAIA/AACAP3Wvs74Z55c/lrD3vnyQk76rFJ6+QH2LPAAAAAAAAAAA+owXvoUbgjoXYMc79uoMuVAINLzrrQQ6AACAPwAAgD/AU1S+QctZP63B7r1n1Jm+Z0PDPHQgRDwAAAAAAAAAAMCsBT4nLnY/quZ0vtR4hb5knce9G0LPvAAAAAAAAAAAzYJMPPZcHLo4/IY7LUAEtjLIbTpKjJq6AACAPwAAgD8A0r88KWC8P7uGdz0UVRC+sOHEPVNupT0AAAAAAAAAAJoZNDnhOI66sO/NOaUYXbX2d2E6Sq/tuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI41MAjGd1YECUhpRSlIwBbJRN6AOMAXSUR0B51U67ulXSdX2UKGgGaAloD0MIkUJZ+HryYUCUhpRSlGgVTegDaBZHQHnv+oYNy5t1fZQoaAZoCWgPQwjh7UEIyIZcQJSGlFKUaBVN6ANoFkdAej//RVp9JHV9lChoBmgJaA9DCKPmq+TjT2BAlIaUUpRoFU3oA2gWR0B6Y+V+qioLdX2UKGgGaAloD0MIYd7jTBPyPsCUhpRSlGgVTYoBaBZHQHpt6ufVZs91fZQoaAZoCWgPQwhPeAlOfUZWQJSGlFKUaBVN6ANoFkdAem9nzg/C7HV9lChoBmgJaA9DCOvFUE60fmFAlIaUUpRoFU3oA2gWR0B6gQ5o4+8odX2UKGgGaAloD0MIC2MLQQ6OTkCUhpRSlGgVTegDaBZHQHqUwX/HYHx1fZQoaAZoCWgPQwi14EVfQRRdQJSGlFKUaBVN6ANoFkdAeqBOgQHzH3V9lChoBmgJaA9DCAjJAiZwb1tAlIaUUpRoFU3oA2gWR0B6rhhAnlXBdX2UKGgGaAloD0MIcY46Oq4HWUCUhpRSlGgVTegDaBZHQHsBnRCx/ut1fZQoaAZoCWgPQwgq4nSSrVdUQJSGlFKUaBVN6ANoFkdAewz+vhZQpHV9lChoBmgJaA9DCDyHMlTFt11AlIaUUpRoFU3oA2gWR0B7FhOh0yP/dX2UKGgGaAloD0MIPL1SliFkU0CUhpRSlGgVTegDaBZHQHs5HrleWv91fZQoaAZoCWgPQwjXoC+9/alSQJSGlFKUaBVN6ANoFkdAezkx8D0UXnV9lChoBmgJaA9DCDo7GRwlT1VAlIaUUpRoFU3oA2gWR0B7P4pb2USqdX2UKGgGaAloD0MINZpcjIG9VkCUhpRSlGgVTegDaBZHQHtwZ84Pwux1fZQoaAZoCWgPQwjiI2JKJM1cQJSGlFKUaBVN6ANoFkdAe55ZSvTw2HV9lChoBmgJaA9DCGTMXUvIuF9AlIaUUpRoFU3oA2gWR0B7753hXKbKdX2UKGgGaAloD0MIS5ARUOFQXECUhpRSlGgVTegDaBZHQHwTS6+WWyF1fZQoaAZoCWgPQwgXK2owDQlQQJSGlFKUaBVN6ANoFkdAfB1yKekHlnV9lChoBmgJaA9DCOnzUUZcjFRAlIaUUpRoFU3oA2gWR0B8HxaUzKs/dX2UKGgGaAloD0MIKPIk6RoeYECUhpRSlGgVTegDaBZHQHwvpn6Eal11fZQoaAZoCWgPQwhS1Jl7SExbQJSGlFKUaBVN6ANoFkdAfEJtcfNiY3V9lChoBmgJaA9DCCoaa39nG15AlIaUUpRoFU3oA2gWR0B8TaPgeii7dX2UKGgGaAloD0MI3/yGiQZIWUCUhpRSlGgVTegDaBZHQHxa6pDNQj51fZQoaAZoCWgPQwjfap24HPVdQJSGlFKUaBVN6ANoFkdAfGF0ngHeJ3V9lChoBmgJaA9DCFlqvd9o4V5AlIaUUpRoFU3oA2gWR0B8uCf4AS39dX2UKGgGaAloD0MI9tIUAU4gY0CUhpRSlGgVTegDaBZHQHy//5+H8CR1fZQoaAZoCWgPQwg4MSQnEzcQwJSGlFKUaBVNXQFoFkdAfM6A6+36RHV9lChoBmgJaA9DCO3T8ZiBU1VAlIaUUpRoFU3oA2gWR0B83U1fmcOLdX2UKGgGaAloD0MIy2Q4ns8QW0CUhpRSlGgVTegDaBZHQHzdWznied11fZQoaAZoCWgPQwg18Q7wpCJbQJSGlFKUaBVN6ANoFkdAfOJKdxyXD3V9lChoBmgJaA9DCID0TZoGMldAlIaUUpRoFU3oA2gWR0B8/td3Sro4dX2UKGgGaAloD0MIG6A01Ch/U0CUhpRSlGgVTegDaBZHQH0kuyeI2wV1fZQoaAZoCWgPQwhfJoqQusFHQJSGlFKUaBVNIwFoFkdAfSqLXtjTa3V9lChoBmgJaA9DCJ+Qnbexi1xAlIaUUpRoFU3oA2gWR0B9Z//0dzXCdX2UKGgGaAloD0MIzT/6Jk2hVkCUhpRSlGgVTegDaBZHQH2GblRxcVx1fZQoaAZoCWgPQwihuyTOCktiQJSGlFKUaBVN6ANoFkdAfZBQTmGM43V9lChoBmgJaA9DCB6Jl6dzzlxAlIaUUpRoFU3oA2gWR0B9oOEpRXOodX2UKGgGaAloD0MILhud81NrV0CUhpRSlGgVTegDaBZHQH2zR7NSqER1fZQoaAZoCWgPQwgUdlH0QDdiQJSGlFKUaBVN6ANoFkdAfb6dJJ5E+nV9lChoBmgJaA9DCA4WTtL8ul9AlIaUUpRoFU3oA2gWR0B9zHozN2TxdX2UKGgGaAloD0MIW+1hLxTsX0CUhpRSlGgVTegDaBZHQH3TecMEzO51fZQoaAZoCWgPQwhIcCNlix9WQJSGlFKUaBVN6ANoFkdAfivhkRSP2nV9lChoBmgJaA9DCPKVQErsqV5AlIaUUpRoFU3oA2gWR0B+NKknCwbEdX2UKGgGaAloD0MIwRw9fm+8V0CUhpRSlGgVTegDaBZHQH5FIptrKvF1fZQoaAZoCWgPQwj+mNamsddeQJSGlFKUaBVN6ANoFkdAflXJDVpblnV9lChoBmgJaA9DCJesinCTt1pAlIaUUpRoFU3oA2gWR0B+W6qioKlYdX2UKGgGaAloD0MIu38sRIfENkCUhpRSlGgVTTMBaBZHQH5j41DSgGt1fZQoaAZoCWgPQwhsdqT6zm1XQJSGlFKUaBVN6ANoFkdAfn4xPO6d2HV9lChoBmgJaA9DCBDOp45VRmBAlIaUUpRoFU3oA2gWR0B+qOKziS7odX2UKGgGaAloD0MIPfNy2H0AY0CUhpRSlGgVTegDaBZHQH6vS619fC11fZQoaAZoCWgPQwjv5T45CpFeQJSGlFKUaBVN6ANoFkdAfvIZezD4xnV9lChoBmgJaA9DCHV3nQ35pGFAlIaUUpRoFU3oA2gWR0B/E/PMSsbOdX2UKGgGaAloD0MI3H9kOnRVXECUhpRSlGgVTegDaBZHQH8e3KKYRd11fZQoaAZoCWgPQwjZsnxdhqZbQJSGlFKUaBVN6ANoFkdAfzDY4ACGOHV9lChoBmgJaA9DCODVcmcmf1lAlIaUUpRoFU3oA2gWR0B/Q/R1HOKPdX2UKGgGaAloD0MI1nH8UGnsXUCUhpRSlGgVTegDaBZHQH9fZHuqm0p1fZQoaAZoCWgPQwjrjVph+v4mwJSGlFKUaBVNTwFoFkdAf2bQQcxTKnV9lChoBmgJaA9DCL4Ts14MQFlAlIaUUpRoFU3oA2gWR0B/ZykgwGnodX2UKGgGaAloD0MIW7Iqwk08YECUhpRSlGgVTegDaBZHQH9zKJ/G2kV1fZQoaAZoCWgPQwhqSx3k9bQwwJSGlFKUaBVNCwFoFkdAf3bq46Oo53V9lChoBmgJaA9DCNk+5C3XmmFAlIaUUpRoFU3oA2gWR0B/yW9US7GvdX2UKGgGaAloD0MI/aGZJ9c1Y0CUhpRSlGgVTegDaBZHQH/Zt2TxG2F1fZQoaAZoCWgPQwg8F0Z6UVdFQJSGlFKUaBVN6ANoFkdAf+uapgkTpXV9lChoBmgJaA9DCNjyyvW2PlhAlIaUUpRoFU3oA2gWR0B/8epeeFtbdX2UKGgGaAloD0MIwXPv4ZKOXUCUhpRSlGgVTegDaBZHQH/6GL5ylvZ1fZQoaAZoCWgPQwi+Sj52F1RUQJSGlFKUaBVN6ANoFkdAgAm8VHnU2HV9lChoBmgJaA9DCDOID+z4H2BAlIaUUpRoFU3oA2gWR0CAHiiUxEfDdX2UKGgGaAloD0MIzH9Iv339TkCUhpRSlGgVTUwBaBZHQIAem5paibl1fZQoaAZoCWgPQwiC/61kxzxfQJSGlFKUaBVN6ANoFkdAgCEM7dSEUXV9lChoBmgJaA9DCPIGmPkO1FxAlIaUUpRoFU3oA2gWR0CATR4KQaJidX2UKGgGaAloD0MInx9GCI/xXECUhpRSlGgVTegDaBZHQIBbGokzGgl1fZQoaAZoCWgPQwhffqfJjHRcQJSGlFKUaBVN6ANoFkdAgGUAf+0gKXV9lChoBmgJaA9DCPON6J51f2BAlIaUUpRoFU3oA2gWR0CAcp22Xsw+dX2UKGgGaAloD0MI6nsNwXF2ZECUhpRSlGgVTegDaBZHQIB2NCgK4QV1fZQoaAZoCWgPQwhZorPMIh9bQJSGlFKUaBVN6ANoFkdAgHZcOTaCc3V9lChoBmgJaA9DCASSsG8nOllAlIaUUpRoFU3oA2gWR0CAe8tRNyo5dX2UKGgGaAloD0MI8KKvIM05W0CUhpRSlGgVTegDaBZHQIB9a5f+jud1fZQoaAZoCWgPQwgCEHf1KoxVQJSGlFKUaBVN6ANoFkdAgIAAuh9LH3V9lChoBmgJaA9DCD2CGylbbl1AlIaUUpRoFU3oA2gWR0CAtQI1tO2zdX2UKGgGaAloD0MIYmafxyizQECUhpRSlGgVTS4BaBZHQIC2Fu3trsV1fZQoaAZoCWgPQwjRzf5AOa9iQJSGlFKUaBVN6ANoFkdAgLeOwosqa3V9lChoBmgJaA9DCPshNlg4LWNAlIaUUpRoFU3oA2gWR0CAuw4BFNL2dX2UKGgGaAloD0MI3ZVdMDi8YkCUhpRSlGgVTegDaBZHQIDGaksSTQp1fZQoaAZoCWgPQwi2+BQA4x5hQJSGlFKUaBVN6ANoFkdAgNlby6MBIXV9lChoBmgJaA9DCFkTC3xFEVZAlIaUUpRoFU3oA2gWR0CA2dOfNA1OdX2UKGgGaAloD0MItBzooTa8Y0CUhpRSlGgVTegDaBZHQIDcNruYx+N1fZQoaAZoCWgPQwhVoYFYNk81wJSGlFKUaBVNOwFoFkdAgOew3HaN/HV9lChoBmgJaA9DCFQdcjPcAPC/lIaUUpRoFUv7aBZHQIEH5TXJ5mh1fZQoaAZoCWgPQwijIeNRKoRbQJSGlFKUaBVN6ANoFkdAgQ+vVVghKXV9lChoBmgJaA9DCNwSueAMQ2VAlIaUUpRoFU3oA2gWR0CBHoY/FBIGdX2UKGgGaAloD0MI1/Z2S3KsY0CUhpRSlGgVTegDaBZHQIE3Te2uxKR1fZQoaAZoCWgPQwgMsI9OXRknQJSGlFKUaBVNCgFoFkdAgTepnpSrHXV9lChoBmgJaA9DCJNVEW4yL1tAlIaUUpRoFU3oA2gWR0CBOxtShrWRdX2UKGgGaAloD0MIWmYRiq3SV0CUhpRSlGgVTegDaBZHQIE7RqqOtGN1fZQoaAZoCWgPQwjI0LGDSjtfQJSGlFKUaBVN6ANoFkdAgUDW4mTkhnV9lChoBmgJaA9DCJ/leXB3r2RAlIaUUpRoFU3oA2gWR0CBQmhJyyUtdX2UKGgGaAloD0MIrtnKS/7EWECUhpRSlGgVTegDaBZHQIFE3MlkYoB1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a37d8e686ee7123b7729fe786bc47f450665929023d31f4ac2be79f65e9ba831
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2a89d0f07c059cdf66e06314b0dfe3e1ddcce6db5b3bbabfd2c272731e81f49
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (258 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 182.8893169254146, "std_reward": 52.90598546974013, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-09T06:08:11.690544"}
|