File size: 15,280 Bytes
b27a485 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "QMMWf9AQcdlp"
},
"source": [
"# Render a HyperNeRF video!\n",
"\n",
"**Author**: [Keunhong Park](https://keunhong.com)\n",
"\n",
"[[Project Page](https://hypernerf.github.io)]\n",
"[[Paper](https://arxiv.org/abs/2106.13228)]\n",
"[[GitHub](https://github.com/google/hypernerf)]\n",
"\n",
"This notebook renders a video using the test cameras generated in the capture processing notebook.\n",
"\n",
"You can also load your own custom cameras by modifying the code slightly.\n",
"\n",
"### Instructions\n",
"\n",
"1. Convert a video into our dataset format using the [capture processing notebook](https://colab.sandbox.google.com/github/google/nerfies/blob/main/notebooks/Nerfies_Capture_Processing.ipynb).\n",
"2. Train a HyperNeRF model using the [training notebook](https://colab.sandbox.google.com/github/google/hypernerf/blob/main/notebooks/HyperNeRF_Training.ipynb)\n",
"3. Run this notebook!\n",
"\n",
"\n",
"### Notes\n",
" * Please report issues on the [GitHub issue tracker](https://github.com/google/hypernerf/issues)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gHqkIo4hcGou"
},
"source": [
"## Environment Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ws81Eje47SuV",
"outputId": "2fa89ef5-4030-46d4-e2d9-2eebffd1b0f9"
},
"outputs": [],
"source": [
"#!wget https://raw.githubusercontent.com/google/hypernerf/main/requirements.txt\n",
"!wget https://raw.githubusercontent.com/xieyizheng/hypernerf/main/requirements.txt\n",
"!python --version\n",
"!pip install -r requirements.txt\n",
"\n",
"#if freshly installed, recommend to restart the runtime!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "-3T2lBKBcIGP",
"outputId": "6bcc5d9c-108a-4c2b-bef5-fe140c87b3fb"
},
"outputs": [],
"source": [
"# @title Configure notebook runtime\n",
"# @markdown If you would like to use a GPU runtime instead, change the runtime type by going to `Runtime > Change runtime type`. \n",
"# @markdown You will have to use a smaller batch size on GPU.\n",
"import jax\n",
"runtime_type = 'gpu' # @param ['gpu', 'tpu']\n",
"if runtime_type == 'tpu':\n",
" import jax.tools.colab_tpu\n",
" jax.tools.colab_tpu.setup_tpu()\n",
"\n",
"print('Detected Devices:', jax.devices())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "82kU-W1NcNTW",
"outputId": "08a21bab-c3cc-43a0-9f1f-fb7e843a8aaa"
},
"outputs": [],
"source": [
"# @title Mount Google Drive\n",
"# @markdown Mount Google Drive onto `/content/gdrive`. You can skip this if running locally.\n",
"\n",
"from google.colab import drive\n",
"drive.mount('/content/gdrive')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YIDbV769cPn1"
},
"outputs": [],
"source": [
"# @title Define imports and utility functions.\n",
"\n",
"import jax\n",
"from jax.config import config as jax_config\n",
"import jax.numpy as jnp\n",
"from jax import grad, jit, vmap\n",
"from jax import random\n",
"\n",
"import flax\n",
"import flax.linen as nn\n",
"from flax import jax_utils\n",
"from flax import optim\n",
"from flax.metrics import tensorboard\n",
"from flax.training import checkpoints\n",
"\n",
"from absl import logging\n",
"from io import BytesIO\n",
"import random as pyrandom\n",
"import numpy as np\n",
"import PIL\n",
"import IPython\n",
"import tempfile\n",
"import imageio\n",
"import mediapy\n",
"from IPython.display import display, HTML\n",
"from base64 import b64encode\n",
"\n",
"\n",
"# Monkey patch logging.\n",
"def myprint(msg, *args, **kwargs):\n",
" print(msg % args)\n",
"\n",
"logging.info = myprint \n",
"logging.warn = myprint\n",
"logging.error = myprint"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "2QYJ7dyMcw2f",
"outputId": "73b49855-05f6-4377-a57a-3a5a061c980a"
},
"outputs": [],
"source": [
"# @title Model and dataset configuration\n",
"# @markdown Change the directories to where you saved your capture and experiment.\n",
"\n",
"\n",
"from pathlib import Path\n",
"from pprint import pprint\n",
"import gin\n",
"from IPython.display import display, Markdown\n",
"\n",
"from hypernerf import models\n",
"from hypernerf import modules\n",
"from hypernerf import warping\n",
"from hypernerf import datasets\n",
"from hypernerf import configs\n",
"\n",
"\n",
"# @markdown The working directory where the trained model is.\n",
"train_dir = '/content/gdrive/My Drive/nerfies/hypernerf_experiments/dvd/exp2' # @param {type: \"string\"}\n",
"# @markdown The directory to the dataset capture.\n",
"data_dir = '/content/gdrive/My Drive/nerfies/captures/dvd' # @param {type: \"string\"}\n",
"\n",
"checkpoint_dir = Path(train_dir, 'checkpoints')\n",
"checkpoint_dir.mkdir(exist_ok=True, parents=True)\n",
"\n",
"config_path = Path(train_dir, 'config.gin')\n",
"with open(config_path, 'r') as f:\n",
" logging.info('Loading config from %s', config_path)\n",
" config_str = f.read()\n",
"gin.parse_config(config_str)\n",
"\n",
"config_path = Path(train_dir, 'config.gin')\n",
"with open(config_path, 'w') as f:\n",
" logging.info('Saving config to %s', config_path)\n",
" f.write(config_str)\n",
"\n",
"exp_config = configs.ExperimentConfig()\n",
"train_config = configs.TrainConfig()\n",
"eval_config = configs.EvalConfig()\n",
"\n",
"display(Markdown(\n",
" gin.config.markdown(gin.config_str())))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 439
},
"id": "6T7LQ5QSmu4o",
"outputId": "399c441e-b125-4a99-b36e-7b58e0256858"
},
"outputs": [],
"source": [
"# @title Create datasource and show an example.\n",
"\n",
"from hypernerf import datasets\n",
"from hypernerf import image_utils\n",
"\n",
"dummy_model = models.NerfModel({}, 0, 0)\n",
"datasource = exp_config.datasource_cls(\n",
" image_scale=exp_config.image_scale,\n",
" random_seed=exp_config.random_seed,\n",
" # Enable metadata based on model needs.\n",
" use_warp_id=dummy_model.use_warp,\n",
" use_appearance_id=(\n",
" dummy_model.nerf_embed_key == 'appearance'\n",
" or dummy_model.hyper_embed_key == 'appearance'),\n",
" use_camera_id=dummy_model.nerf_embed_key == 'camera',\n",
" use_time=dummy_model.warp_embed_key == 'time')\n",
"\n",
"mediapy.show_image(datasource.load_rgb(datasource.train_ids[0]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "jEO3xcxpnCqx",
"outputId": "15e2646e-cf00-4c86-f110-86e21b686813"
},
"outputs": [],
"source": [
"# @title Load model\n",
"# @markdown Defines the model and initializes its parameters.\n",
"\n",
"from flax.training import checkpoints\n",
"from hypernerf import models\n",
"from hypernerf import model_utils\n",
"from hypernerf import schedules\n",
"from hypernerf import training\n",
"\n",
"rng = random.PRNGKey(exp_config.random_seed)\n",
"np.random.seed(exp_config.random_seed + jax.process_index())\n",
"devices_to_use = jax.devices()\n",
"\n",
"learning_rate_sched = schedules.from_config(train_config.lr_schedule)\n",
"nerf_alpha_sched = schedules.from_config(train_config.nerf_alpha_schedule)\n",
"warp_alpha_sched = schedules.from_config(train_config.warp_alpha_schedule)\n",
"elastic_loss_weight_sched = schedules.from_config(\n",
"train_config.elastic_loss_weight_schedule)\n",
"hyper_alpha_sched = schedules.from_config(train_config.hyper_alpha_schedule)\n",
"hyper_sheet_alpha_sched = schedules.from_config(\n",
" train_config.hyper_sheet_alpha_schedule)\n",
"\n",
"rng, key = random.split(rng)\n",
"params = {}\n",
"model, params['model'] = models.construct_nerf(\n",
" key,\n",
" batch_size=train_config.batch_size,\n",
" embeddings_dict=datasource.embeddings_dict,\n",
" near=datasource.near,\n",
" far=datasource.far)\n",
"\n",
"optimizer_def = optim.Adam(learning_rate_sched(0))\n",
"optimizer = optimizer_def.create(params)\n",
"\n",
"state = model_utils.TrainState(\n",
" optimizer=optimizer,\n",
" nerf_alpha=nerf_alpha_sched(0),\n",
" warp_alpha=warp_alpha_sched(0),\n",
" hyper_alpha=hyper_alpha_sched(0),\n",
" hyper_sheet_alpha=hyper_sheet_alpha_sched(0))\n",
"scalar_params = training.ScalarParams(\n",
" learning_rate=learning_rate_sched(0),\n",
" elastic_loss_weight=elastic_loss_weight_sched(0),\n",
" warp_reg_loss_weight=train_config.warp_reg_loss_weight,\n",
" warp_reg_loss_alpha=train_config.warp_reg_loss_alpha,\n",
" warp_reg_loss_scale=train_config.warp_reg_loss_scale,\n",
" background_loss_weight=train_config.background_loss_weight,\n",
" hyper_reg_loss_weight=train_config.hyper_reg_loss_weight)\n",
"\n",
"logging.info('Restoring checkpoint from %s', checkpoint_dir)\n",
"state = checkpoints.restore_checkpoint(checkpoint_dir, state)\n",
"step = state.optimizer.state.step + 1\n",
"state = jax_utils.replicate(state, devices=devices_to_use)\n",
"del params"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "2KYhbpsklwAy"
},
"outputs": [],
"source": [
"# @title Define pmapped render function.\n",
"\n",
"import functools\n",
"from hypernerf import evaluation\n",
"\n",
"devices = jax.devices()\n",
"\n",
"\n",
"def _model_fn(key_0, key_1, params, rays_dict, extra_params):\n",
" out = model.apply({'params': params},\n",
" rays_dict,\n",
" extra_params=extra_params,\n",
" rngs={\n",
" 'coarse': key_0,\n",
" 'fine': key_1\n",
" },\n",
" mutable=False)\n",
" return jax.lax.all_gather(out, axis_name='batch')\n",
"\n",
"pmodel_fn = jax.pmap(\n",
" # Note rng_keys are useless in eval mode since there's no randomness.\n",
" _model_fn,\n",
" in_axes=(0, 0, 0, 0, 0), # Only distribute the data input.\n",
" devices=devices_to_use,\n",
" axis_name='batch',\n",
")\n",
"\n",
"render_fn = functools.partial(evaluation.render_image,\n",
" model_fn=pmodel_fn,\n",
" device_count=len(devices),\n",
" chunk=eval_config.chunk)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "73Fq0kNcmAra",
"outputId": "01f7bcee-833f-47fb-d2ab-0a9a2c15837f"
},
"outputs": [],
"source": [
"# @title Load cameras.\n",
"\n",
"from hypernerf import utils\n",
"\n",
"camera_path = 'camera-paths/orbit-mild' # @param {type: 'string'}\n",
"\n",
"camera_dir = Path(data_dir, camera_path)\n",
"print(f'Loading cameras from {camera_dir}')\n",
"test_camera_paths = datasource.glob_cameras(camera_dir)\n",
"test_cameras = utils.parallel_map(datasource.load_camera, test_camera_paths, show_pbar=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "aP9LjiAZmoRc",
"outputId": "811dfbc3-ccbc-4748-dee8-92281ea01b2c"
},
"outputs": [],
"source": [
"# @title Render video frames.\n",
"from hypernerf import visualization as viz\n",
"\n",
"\n",
"rng = rng + jax.process_index() # Make random seed separate across hosts.\n",
"keys = random.split(rng, len(devices))\n",
"\n",
"results = []\n",
"for i in range(len(test_cameras)):\n",
" print(f'Rendering frame {i+1}/{len(test_cameras)}')\n",
" camera = test_cameras[i]\n",
" batch = datasets.camera_to_rays(camera)\n",
" batch['metadata'] = {\n",
" 'appearance': jnp.zeros_like(batch['origins'][..., 0, jnp.newaxis], jnp.uint32),\n",
" 'warp': jnp.zeros_like(batch['origins'][..., 0, jnp.newaxis], jnp.uint32),\n",
" }\n",
" #these two are the \"ambient dimensions\" or \"time axis\" for rendering\n",
" batch['metadata']['appearance'] += i\n",
" batch['metadata']['warp'] += i\n",
"\n",
" render = render_fn(state, batch, rng=rng)\n",
" rgb = np.array(render['rgb'])\n",
" depth_med = np.array(render['med_depth'])\n",
" results.append((rgb, depth_med))\n",
" depth_viz = viz.colorize(depth_med.squeeze(), cmin=datasource.near, cmax=datasource.far, invert=True)\n",
" mediapy.show_images([rgb, depth_viz])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_5hHR9XVm8Ix"
},
"outputs": [],
"source": [
"# @title Show rendered video.\n",
"\n",
"fps = 30 # @param {type:'number'}\n",
"\n",
"frames = []\n",
"for rgb, depth in results:\n",
" depth_viz = viz.colorize(depth.squeeze(), cmin=datasource.near, cmax=datasource.far, invert=True)\n",
" frame = np.concatenate([rgb, depth_viz], axis=1)\n",
" frames.append(image_utils.image_to_uint8(frame))\n",
"\n",
"mediapy.show_video(frames, fps=fps)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WW32AVGR0Vwh"
},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"machine_shape": "hm",
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|