|
logging: |
|
log_dir: /data/ziweicui/cellvit-unireplknet-n/2024-04-30T135715_CellViT-unireplknet-fold1 |
|
mode: online |
|
project: Cell-Segmentation |
|
notes: CellViT-256 |
|
log_comment: CellViT-unireplknet-fold1 |
|
tags: |
|
- Fold-1 |
|
- ViT256 |
|
wandb_dir: /home/ziweicui/cell_unireplknet/results |
|
level: Debug |
|
group: CellViT256 |
|
run_id: iuq2auqz |
|
wandb_file: iuq2auqz |
|
random_seed: 19 |
|
gpu: 0 |
|
data: |
|
dataset: PanNuke |
|
dataset_path: /data/ziweicui/cellvit-png |
|
train_folds: |
|
- 0 |
|
val_folds: |
|
- 1 |
|
test_folds: |
|
- 2 |
|
num_nuclei_classes: 6 |
|
num_tissue_classes: 19 |
|
model: |
|
backbone: default |
|
pretrained_encoder: /data/ziweicui/cellvit-unireplknet-n/unireplknet_n_in1k_224_acc81.64.pth |
|
shared_skip_connections: true |
|
loss: |
|
nuclei_binary_map: |
|
focaltverskyloss: |
|
loss_fn: FocalTverskyLoss |
|
weight: 1 |
|
dice: |
|
loss_fn: dice_loss |
|
weight: 1 |
|
hv_map: |
|
mse: |
|
loss_fn: mse_loss_maps |
|
weight: 2.5 |
|
msge: |
|
loss_fn: msge_loss_maps |
|
weight: 8 |
|
nuclei_type_map: |
|
bce: |
|
loss_fn: xentropy_loss |
|
weight: 0.5 |
|
dice: |
|
loss_fn: dice_loss |
|
weight: 0.2 |
|
mcfocaltverskyloss: |
|
loss_fn: MCFocalTverskyLoss |
|
weight: 0.5 |
|
args: |
|
num_classes: 6 |
|
tissue_types: |
|
ce: |
|
loss_fn: CrossEntropyLoss |
|
weight: 0.1 |
|
training: |
|
drop_rate: 0 |
|
attn_drop_rate: 0.1 |
|
drop_path_rate: 0.1 |
|
batch_size: 16 |
|
world_size: 2 |
|
rank: 0 |
|
epochs: 100 |
|
optimizer: AdamW |
|
early_stopping_patience: 70 |
|
scheduler: |
|
scheduler_type: cosine |
|
hyperparameters: |
|
eta_min: 1e-5 |
|
optimizer_hyperparameter: |
|
betas: |
|
- 0.85 |
|
- 0.95 |
|
lr: 0.001 |
|
weight_decay: 0.1 |
|
opt_eps: 8.0e-08 |
|
layer_decay: 0.999999 |
|
unfreeze_epoch: 0 |
|
sampling_gamma: 0.85 |
|
sampling_strategy: cell+tissue |
|
mixed_precision: false |
|
transformations: |
|
randomrotate90: |
|
p: 0.5 |
|
horizontalflip: |
|
p: 0.5 |
|
verticalflip: |
|
p: 0.5 |
|
downscale: |
|
p: 0.15 |
|
scale: 0.5 |
|
blur: |
|
p: 0.2 |
|
blur_limit: 10 |
|
gaussnoise: |
|
p: 0.25 |
|
var_limit: 50 |
|
colorjitter: |
|
p: 0.2 |
|
scale_setting: 0.25 |
|
scale_color: 0.1 |
|
superpixels: |
|
p: 0.1 |
|
zoomblur: |
|
p: 0.1 |
|
randomsizedcrop: |
|
p: 0.1 |
|
elastictransform: |
|
p: 0.2 |
|
normalize: |
|
mean: |
|
- 0.5 |
|
- 0.5 |
|
- 0.5 |
|
std: |
|
- 0.5 |
|
- 0.5 |
|
- 0.5 |
|
eval_checkpoint: latest_checkpoint.pth |
|
dataset_config: |
|
tissue_types: |
|
Adrenal_gland: 0 |
|
Bile-duct: 1 |
|
Bladder: 2 |
|
Breast: 3 |
|
Cervix: 4 |
|
Colon: 5 |
|
Esophagus: 6 |
|
HeadNeck: 7 |
|
Kidney: 8 |
|
Liver: 9 |
|
Lung: 10 |
|
Ovarian: 11 |
|
Pancreatic: 12 |
|
Prostate: 13 |
|
Skin: 14 |
|
Stomach: 15 |
|
Testis: 16 |
|
Thyroid: 17 |
|
Uterus: 18 |
|
nuclei_types: |
|
Background: 0 |
|
Neoplastic: 1 |
|
Inflammatory: 2 |
|
Connective: 3 |
|
Dead: 4 |
|
Epithelial: 5 |
|
run_sweep: false |
|
agent: null |
|
|