File size: 5,075 Bytes
32d895f fac7157 32d895f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: plateer_classifier_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# plateer_classifier_test
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on [x2bee/plateer_category_data](https://huggingface.co/datasets/x2bee/plateer_category_data).
It achieves the following results on the evaluation set:
- [MLflow Result(https://polar-mlflow.x2bee.com/#/experiments/27/runs/baa7269894b14f91b8a8ea3822474476)]
- Loss: 0.3242
- Accuracy: 0.8997
## How To use
#### Load Base Model and Plateer Classifier Model.
```python
import joblib;
from huggingface_hub import hf_hub_download;
from peft import PeftModel, PeftConfig;
from transformers import AutoTokenizer, TextClassificationPipeline, AutoModelForSequenceClassification;
from huggingface_hub import HfApi, login
with open('./api_key/HGF_TOKEN.txt', 'r') as hgf:
login(token=hgf.read())
api = HfApi()
repo_id = "x2bee/plateer_classifier_v0.1"
data_id = "x2bee/plateer_category_data"
# Load Config, Tokenizer, Label_Encoder
config = PeftConfig.from_pretrained(repo_id, subfolder="last-checkpoint")
tokenizer = AutoTokenizer.from_pretrained(repo_id, subfolder="last-checkpoint")
label_encoder_file = hf_hub_download(repo_id=data_id, repo_type="dataset", filename="label_encoder.joblib")
label_encoder = joblib.load(label_encoder_file)
# Load base_model
base_model = AutoModelForSequenceClassification.from_pretrained("Qwen/Qwen2.5-1.5B", num_labels=17)
base_model.resize_token_embeddings(len(tokenizer))
# Load Model
model = PeftModel.from_pretrained(base_model, repo_id, subfolder="last-checkpoint")
import torch
class TextClassificationPipeline(TextClassificationPipeline):
def __call__(self, inputs, top_k=5, **kwargs):
inputs = self.tokenizer(inputs, return_tensors="pt", truncation=True, padding=True, **kwargs)
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
scores, indices = torch.topk(probs, top_k, dim=-1)
results = []
for batch_idx in range(indices.shape[0]):
batch_results = []
for score, idx in zip(scores[batch_idx], indices[batch_idx]):
temp_list = []
label = self.model.config.id2label[idx.item()]
label = int(label.split("_")[1])
temp_list.append(label)
predicted_class = label_encoder.inverse_transform(temp_list)[0]
batch_results.append({
"label": label,
"label_decode": predicted_class,
"score": score.item(),
})
results.append(batch_results)
return results
classifier_model = TextClassificationPipeline(tokenizer=tokenizer, model=model)
def plateer_classifier(text, top_k=3):
result = classifier_model(text, top_k=top_k)
return result
```
#### Run
```python
user_input = "머리띠"
result = plateer_classifier(user_input)[0]
print(result)
```
```bash
{'label': 6, 'label_decode': '뷰티/케어', 'score': 0.42996299266815186}
{'label': 15, 'label_decode': '패션/의류/잡화', 'score': 0.1485249102115631}
{'label': 8, 'label_decode': '스포츠', 'score': 0.1281907707452774}
```
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:------:|:---------------:|:--------:|
| 0.5023 | 0.0292 | 5000 | 0.5044 | 0.8572 |
| 0.4629 | 0.0585 | 10000 | 0.4571 | 0.8688 |
| 0.4254 | 0.0878 | 15000 | 0.4201 | 0.8770 |
| 0.4025 | 0.1171 | 20000 | 0.4016 | 0.8823 |
| 0.3635 | 0.3220 | 55000 | 0.3623 | 0.8905 |
| 0.3192 | 0.6441 | 110000 | 0.3242 | 0.8997 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.2.1
- Datasets 3.1.0
- Tokenizers 0.20.3 |