File size: 5,075 Bytes
32d895f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fac7157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d895f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: plateer_classifier_test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# plateer_classifier_test

This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on [x2bee/plateer_category_data](https://huggingface.co/datasets/x2bee/plateer_category_data).
It achieves the following results on the evaluation set:
- [MLflow Result(https://polar-mlflow.x2bee.com/#/experiments/27/runs/baa7269894b14f91b8a8ea3822474476)]
- Loss: 0.3242
- Accuracy: 0.8997

## How To use
#### Load Base Model and Plateer Classifier Model.
```python
import joblib;
from huggingface_hub import hf_hub_download;
from peft import PeftModel, PeftConfig;
from transformers import AutoTokenizer, TextClassificationPipeline, AutoModelForSequenceClassification;
from huggingface_hub import HfApi, login
with open('./api_key/HGF_TOKEN.txt', 'r') as hgf:
    login(token=hgf.read())
api = HfApi()
repo_id = "x2bee/plateer_classifier_v0.1"
data_id = "x2bee/plateer_category_data"

# Load Config, Tokenizer, Label_Encoder
config = PeftConfig.from_pretrained(repo_id, subfolder="last-checkpoint")
tokenizer = AutoTokenizer.from_pretrained(repo_id, subfolder="last-checkpoint")
label_encoder_file = hf_hub_download(repo_id=data_id, repo_type="dataset", filename="label_encoder.joblib")
label_encoder = joblib.load(label_encoder_file)

# Load base_model
base_model = AutoModelForSequenceClassification.from_pretrained("Qwen/Qwen2.5-1.5B", num_labels=17)
base_model.resize_token_embeddings(len(tokenizer))

# Load Model
model = PeftModel.from_pretrained(base_model, repo_id, subfolder="last-checkpoint")

import torch
class TextClassificationPipeline(TextClassificationPipeline):
    def __call__(self, inputs, top_k=5, **kwargs):
        inputs = self.tokenizer(inputs, return_tensors="pt", truncation=True, padding=True, **kwargs)
        inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
        
        with torch.no_grad():
            outputs = self.model(**inputs)
        
        probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
        scores, indices = torch.topk(probs, top_k, dim=-1)
        
        results = []
        for batch_idx in range(indices.shape[0]):
            batch_results = []
            for score, idx in zip(scores[batch_idx], indices[batch_idx]):
                temp_list = []
                label = self.model.config.id2label[idx.item()]
                label = int(label.split("_")[1])
                temp_list.append(label)
                predicted_class = label_encoder.inverse_transform(temp_list)[0]
                            
                batch_results.append({
                    "label": label,
                    "label_decode": predicted_class,
                    "score": score.item(),
                })
            results.append(batch_results)
        
        return results

classifier_model = TextClassificationPipeline(tokenizer=tokenizer, model=model)

def plateer_classifier(text, top_k=3):
    result = classifier_model(text, top_k=top_k)
    return result
```

#### Run
```python
user_input = "머리띠"
result = plateer_classifier(user_input)[0]
print(result)
```

```bash
{'label': 6, 'label_decode': '뷰티/케어', 'score': 0.42996299266815186}
{'label': 15, 'label_decode': '패션/의류/잡화', 'score': 0.1485249102115631}
{'label': 8, 'label_decode': '스포츠', 'score': 0.1281907707452774}
```


More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step   | Validation Loss | Accuracy |
|:-------------:|:------:|:------:|:---------------:|:--------:|
| 0.5023        | 0.0292 | 5000   | 0.5044          | 0.8572   |
| 0.4629        | 0.0585 | 10000  | 0.4571          | 0.8688   |
| 0.4254        | 0.0878 | 15000  | 0.4201          | 0.8770   |
| 0.4025        | 0.1171 | 20000  | 0.4016          | 0.8823   |
| 0.3635        | 0.3220 | 55000  | 0.3623          | 0.8905   |
| 0.3192        | 0.6441 | 110000 | 0.3242          | 0.8997   |

### Framework versions

- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.2.1
- Datasets 3.1.0
- Tokenizers 0.20.3