import os import gc import torch import torch._dynamo from typing import TypeAlias from torch import Generator from PIL.Image import Image from diffusers import ( FluxPipeline, FluxTransformer2DModel, AutoencoderTiny, DiffusionPipeline, ) from huggingface_hub.constants import HF_HUB_CACHE from pipelines.models import TextToImageRequest from torchao.quantization import quantize_, int8_weight_only from transformers import T5EncoderModel torch._dynamo.config.suppress_errors = True Pipeline: TypeAlias = FluxPipeline torch.backends.cudnn.benchmark = True torch._inductor.config.conv_1x1_as_mm = True torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.epilogue_fusion = False torch._inductor.config.coordinate_descent_check_all_directions = True os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" os.environ["TOKENIZERS_PARALLELISM"] = "True" CHECKPOINT = "winner632/flux1-schnell-int8wo" REVISION = "d9ff2fc9ad81476d3ef3a5f40d273f0fa5a36f2b" def clear_gpu_cache(): """Frees GPU memory to prevent memory leaks.""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() def load_pipeline() -> Pipeline: """Loads the diffusion pipeline with quantization and optimizations.""" clear_gpu_cache() transformer_model = FluxTransformer2DModel.from_pretrained( os.path.join( HF_HUB_CACHE, "models--winner632--flux1-schnell-int8wo/snapshots/d9ff2fc9ad81476d3ef3a5f40d273f0fa5a36f2b/transformer", ), use_safetensors=True, local_files_only=True, torch_dtype=torch.bfloat16, ) pipe = FluxPipeline.from_pretrained( CHECKPOINT, revision=REVISION, transformer=transformer_model, local_files_only=True, torch_dtype=torch.bfloat16, ).to("cuda") pipe.to(memory_format=torch.channels_last) pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead") quantize_(pipe.transformer, int8_weight_only()) quantize_(pipe.vae, int8_weight_only()) pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead") with torch.no_grad(): for _ in range(5): pipe( prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0, num_inference_steps=4, max_sequence_length=256, ) clear_gpu_cache() return pipe @torch.no_grad() def infer( request: TextToImageRequest, pipeline: Pipeline, generator: Generator ) -> Image: """Generates an image from text input using the loaded pipeline.""" return pipeline( request.prompt, generator=generator, guidance_scale=0e0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil", ).images[0] # Example Usage if __name__ == "__main__": print("load pipeline...") diffusion_pipeline = load_pipeline() sample_request = TextToImageRequest( prompt="A futuristic cityscape with neon lights", height=1024, width=1024, ) generator = torch.Generator(device="cuda").manual_seed(42) print("Generating image...") generated_img = infer(sample_request, diffusion_pipeline, generator) generated_img.show()