File size: 3,764 Bytes
77ab89f 2de50d8 77ab89f 2de50d8 77ab89f 2de50d8 77ab89f 2de50d8 77ab89f 2de50d8 77ab89f 2de50d8 77ab89f 2de50d8 77ab89f 2de50d8 77ab89f 2de50d8 77ab89f 2de50d8 77ab89f 2de50d8 77ab89f 2de50d8 77ab89f 2de50d8 77ab89f 2de50d8 77ab89f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
library_name: transformers
license: apache-2.0
base_model: JackFram/llama-68m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 4ada8092-cc1e-445c-9260-a580ef2586ae
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: JackFram/llama-68m
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
- ff3a521d02fa72b2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ff3a521d02fa72b2_train_data.json
type:
field_instruction: context
field_output: question
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
eval_steps: 20
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/4ada8092-cc1e-445c-9260-a580ef2586ae
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 2500
micro_batch_size: 4
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/configs
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 40
save_total_limit: 1
sequence_len: 2048
special_tokens:
pad_token: </s>
tokenizer_type: LlamaTokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: JackFram/llama-68m-/workspace/input_data/ff3a521d02fa72b2_train_data.json
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true
```
</details><br>
# 4ada8092-cc1e-445c-9260-a580ef2586ae
This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2208
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 205
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0006 | 1 | 6.7193 |
| 1.5212 | 0.0122 | 20 | 1.0774 |
| 0.7826 | 0.0244 | 40 | 0.6352 |
| 0.5492 | 0.0366 | 60 | 0.4713 |
| 0.3663 | 0.0488 | 80 | 0.3924 |
| 0.3533 | 0.0610 | 100 | 0.3112 |
| 0.2434 | 0.0732 | 120 | 0.2761 |
| 0.2989 | 0.0854 | 140 | 0.2445 |
| 0.2464 | 0.0976 | 160 | 0.2251 |
| 0.2233 | 0.1098 | 180 | 0.2203 |
| 0.2213 | 0.1220 | 200 | 0.2208 |
### Framework versions
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
|