File size: 3,764 Bytes
77ab89f
 
2de50d8
 
77ab89f
 
 
 
2de50d8
77ab89f
 
 
 
 
 
 
 
 
 
 
2de50d8
77ab89f
 
 
 
 
2de50d8
77ab89f
 
2de50d8
77ab89f
2de50d8
 
 
77ab89f
 
 
 
 
 
 
 
2de50d8
77ab89f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de50d8
 
 
77ab89f
 
 
 
 
2de50d8
77ab89f
 
 
 
 
 
 
 
 
 
2de50d8
77ab89f
2de50d8
77ab89f
2de50d8
77ab89f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de50d8
 
77ab89f
 
 
 
 
2de50d8
 
 
 
 
 
 
 
 
 
 
77ab89f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
library_name: transformers
license: apache-2.0
base_model: JackFram/llama-68m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 4ada8092-cc1e-445c-9260-a580ef2586ae
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: JackFram/llama-68m
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
  - ff3a521d02fa72b2_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/ff3a521d02fa72b2_train_data.json
  type:
    field_instruction: context
    field_output: question
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
eval_steps: 20
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/4ada8092-cc1e-445c-9260-a580ef2586ae
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 2500
micro_batch_size: 4
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/configs
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 40
save_total_limit: 1
sequence_len: 2048
special_tokens:
  pad_token: </s>
tokenizer_type: LlamaTokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: JackFram/llama-68m-/workspace/input_data/ff3a521d02fa72b2_train_data.json
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true

```

</details><br>

# 4ada8092-cc1e-445c-9260-a580ef2586ae

This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2208

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 205

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0006 | 1    | 6.7193          |
| 1.5212        | 0.0122 | 20   | 1.0774          |
| 0.7826        | 0.0244 | 40   | 0.6352          |
| 0.5492        | 0.0366 | 60   | 0.4713          |
| 0.3663        | 0.0488 | 80   | 0.3924          |
| 0.3533        | 0.0610 | 100  | 0.3112          |
| 0.2434        | 0.0732 | 120  | 0.2761          |
| 0.2989        | 0.0854 | 140  | 0.2445          |
| 0.2464        | 0.0976 | 160  | 0.2251          |
| 0.2233        | 0.1098 | 180  | 0.2203          |
| 0.2213        | 0.1220 | 200  | 0.2208          |


### Framework versions

- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1