# -*- coding: utf-8 -*- """ Created on Fri Sep 13 19:23:54 2024 This script defines the LWM model architecture. @author: Sadjad Alikhani """ #%% import torch import torch.nn as nn import torch.nn.functional as F import numpy as np #%% class LayerNormalization(nn.Module): def __init__(self, d_model: int, eps: float = 1e-6) -> None: super().__init__() self.eps = eps self.alpha = nn.Parameter(torch.ones(d_model)) self.bias = nn.Parameter(torch.zeros(d_model)) def forward(self, x): mean = x.mean(dim=-1, keepdim=True) std = x.std(dim=-1, keepdim=True) return self.alpha * (x - mean) / (std + self.eps) + self.bias class Embedding(nn.Module): def __init__(self, element_length, d_model, max_len=513): super().__init__() self.element_length = element_length self.d_model = d_model self.proj = nn.Linear(element_length, d_model) self.pos_embed = nn.Embedding(max_len, d_model) self.norm = LayerNormalization(d_model) def forward(self, x): seq_len = x.size(1) pos = torch.arange(seq_len, dtype=torch.long, device=x.device) pos_encodings = self.pos_embed(pos) tok_emb = self.proj(x.float()) embedding = tok_emb + pos_encodings return self.norm(embedding) class ScaledDotProductAttention(nn.Module): def __init__(self, d_k): super().__init__() self.d_k = d_k def forward(self, Q, K, V): scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(self.d_k) attn = F.softmax(scores, dim=-1) context = torch.matmul(attn, V) return context, attn class MultiHeadAttention(nn.Module): def __init__(self, d_model, n_heads, dropout): super().__init__() self.d_k = d_model // n_heads self.d_v = d_model // n_heads self.n_heads = n_heads self.W_Q = nn.Linear(d_model, self.d_k * n_heads) self.W_K = nn.Linear(d_model, self.d_k * n_heads) self.W_V = nn.Linear(d_model, self.d_v * n_heads) self.linear = nn.Linear(n_heads * self.d_v, d_model) self.dropout = nn.Dropout(dropout) self.scaled_dot_attn = ScaledDotProductAttention(self.d_k) def forward(self, Q, K, V): residual, batch_size = Q, Q.size(0) q_s = self.W_Q(Q).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2) k_s = self.W_K(K).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2) v_s = self.W_V(V).view(batch_size, -1, self.n_heads, self.d_v).transpose(1, 2) context, attn = self.scaled_dot_attn(q_s, k_s, v_s) output = context.transpose(1, 2).contiguous().view(batch_size, -1, self.n_heads * self.d_v) output = self.linear(output) return residual + self.dropout(output), attn class PoswiseFeedForwardNet(nn.Module): def __init__(self, d_model, d_ff, dropout): super().__init__() self.fc1 = nn.Linear(d_model, d_ff) self.fc2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.fc2(self.dropout(F.relu(self.fc1(x)))) class EncoderLayer(nn.Module): def __init__(self, d_model, n_heads, d_ff, dropout): super().__init__() self.enc_self_attn = MultiHeadAttention(d_model, n_heads, dropout) self.pos_ffn = PoswiseFeedForwardNet(d_model, d_ff, dropout) self.norm1 = LayerNormalization(d_model) self.norm2 = LayerNormalization(d_model) def forward(self, enc_inputs): # Self-Attention with Add & Norm attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs) attn_outputs = self.norm1(enc_inputs + attn_outputs) # Add & Norm # Feed-Forward with Add & Norm ff_outputs = self.pos_ffn(attn_outputs) enc_outputs = self.norm2(attn_outputs + ff_outputs) # Add & Norm return enc_outputs, attn class lwm(nn.Module): def __init__(self, element_length=32, d_model=128, n_layers=12, max_len=513, n_heads=8, dropout=0.1): super().__init__() self.embedding = Embedding(element_length, d_model, max_len) self.layers = nn.ModuleList( [EncoderLayer(d_model, n_heads, d_model*4, dropout) for _ in range(n_layers)] ) self.linear = nn.Linear(d_model, d_model) self.norm = LayerNormalization(d_model) embed_weight = self.embedding.proj.weight _, n_dim = embed_weight.size() self.decoder = nn.Linear(d_model, n_dim, bias=False) self.decoder_bias = nn.Parameter(torch.zeros(n_dim)) @classmethod def from_pretrained(cls, ckpt_name='model_weights.pth', device='cuda'): model = cls().to(device) model.load_state_dict(torch.load(ckpt_name, map_location=device)) print(f"Model loaded successfully from {ckpt_name}") return model def forward(self, input_ids, masked_pos=None): # Step 1: Embedding output = self.embedding(input_ids) attention_maps = [] # Step 2: Pass through Encoder Layers for layer in self.layers: output, attn = layer(output) attention_maps.append(attn) # If masked_pos is provided, perform masked token prediction if masked_pos is not None: masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1)) h_masked = torch.gather(output, 1, masked_pos) h_masked = self.norm(F.relu(self.linear(h_masked))) logits_lm = self.decoder(h_masked) + self.decoder_bias return logits_lm, output, attention_maps else: return output, attention_maps