wi-lab commited on
Commit
b72e17f
·
verified ·
1 Parent(s): 1e116fc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md CHANGED
@@ -69,6 +69,53 @@ Explore LWM concepts and applications in this compact video series:
69
  </table>
70
  -->
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  ### **How is LWM 1.1 built?**
73
 
74
  LWM 1.1 is a **transformer-based architecture** designed to model **spatial and frequency dependencies** in wireless channel data. It utilizes an enhanced **Masked Channel Modeling (MCM)** pretraining approach, with an increased masking ratio to improve feature learning and generalization. The introduction of **2D patch segmentation** allows the model to jointly process spatial (antenna) and frequency (subcarrier) relationships, providing a more structured representation of the channel. Additionally, **bucket-based batching** is employed to efficiently handle variable-sized inputs without excessive padding, ensuring memory-efficient training and inference. These modifications enable LWM 1.1 to extract meaningful embeddings from a wide range of wireless scenarios, improving its applicability across different system configurations.
 
69
  </table>
70
  -->
71
 
72
+ ### 🎥 LWM Tutorial Series
73
+
74
+ Explore LWM concepts and applications in this compact video series:
75
+
76
+ <table>
77
+ <tr>
78
+ <td align="center">
79
+ <a href="https://www.youtube.com/watch?v=3sxJR86EFOo" target="_blank">
80
+ <img src="https://img.youtube.com/vi/3sxJR86EFOo/0.jpg" width="180"/>
81
+ <div style="margin-top:4px;padding:4px 12px;background:#f97316;color:white;border-radius:6px;font-weight:600;">▶ Watch</div>
82
+ </a>
83
+ </td>
84
+ <td align="center">
85
+ <a href="https://www.youtube.com/watch?v=Coqcya9NzFs" target="_blank">
86
+ <img src="https://img.youtube.com/vi/Coqcya9NzFs/0.jpg" width="180"/>
87
+ <div style="margin-top:4px;padding:4px 12px;background:#f97316;color:white;border-radius:6px;font-weight:600;">▶ Watch</div>
88
+ </a>
89
+ </td>
90
+ <td align="center">
91
+ <a href="https://www.youtube.com/watch?v=e9KvAXMUuQg" target="_blank">
92
+ <img src="https://img.youtube.com/vi/e9KvAXMUuQg/0.jpg" width="180"/>
93
+ <div style="margin-top:4px;padding:4px 12px;background:#f97316;color:white;border-radius:6px;font-weight:600;">▶ Watch</div>
94
+ </a>
95
+ </td>
96
+ </tr>
97
+ <tr>
98
+ <td align="center">
99
+ <a href="https://www.youtube.com/watch?v=ZB5WVvo6q6U" target="_blank">
100
+ <img src="https://img.youtube.com/vi/ZB5WVvo6q6U/0.jpg" width="180"/>
101
+ <div style="margin-top:4px;padding:4px 12px;background:#f97316;color:white;border-radius:6px;font-weight:600;">▶ Watch</div>
102
+ </a>
103
+ </td>
104
+ <td align="center">
105
+ <a href="https://www.youtube.com/watch?v=5oNnJjos0mo" target="_blank">
106
+ <img src="https://img.youtube.com/vi/5oNnJjos0mo/0.jpg" width="180"/>
107
+ <div style="margin-top:4px;padding:4px 12px;background:#f97316;color:white;border-radius:6px;font-weight:600;">▶ Watch</div>
108
+ </a>
109
+ </td>
110
+ <td align="center">
111
+ <a href="https://www.youtube.com/watch?v=_RObWck3MMw" target="_blank">
112
+ <img src="https://img.youtube.com/vi/_RObWck3MMw/0.jpg" width="180"/>
113
+ <div style="margin-top:4px;padding:4px 12px;background:#f97316;color:white;border-radius:6px;font-weight:600;">▶ Watch</div>
114
+ </a>
115
+ </td>
116
+ </tr>
117
+ </table>
118
+
119
  ### **How is LWM 1.1 built?**
120
 
121
  LWM 1.1 is a **transformer-based architecture** designed to model **spatial and frequency dependencies** in wireless channel data. It utilizes an enhanced **Masked Channel Modeling (MCM)** pretraining approach, with an increased masking ratio to improve feature learning and generalization. The introduction of **2D patch segmentation** allows the model to jointly process spatial (antenna) and frequency (subcarrier) relationships, providing a more structured representation of the channel. Additionally, **bucket-based batching** is employed to efficiently handle variable-sized inputs without excessive padding, ensuring memory-efficient training and inference. These modifications enable LWM 1.1 to extract meaningful embeddings from a wide range of wireless scenarios, improving its applicability across different system configurations.