Update README.md
Browse files
README.md
CHANGED
@@ -69,6 +69,53 @@ Explore LWM concepts and applications in this compact video series:
|
|
69 |
</table>
|
70 |
-->
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
### **How is LWM 1.1 built?**
|
73 |
|
74 |
LWM 1.1 is a **transformer-based architecture** designed to model **spatial and frequency dependencies** in wireless channel data. It utilizes an enhanced **Masked Channel Modeling (MCM)** pretraining approach, with an increased masking ratio to improve feature learning and generalization. The introduction of **2D patch segmentation** allows the model to jointly process spatial (antenna) and frequency (subcarrier) relationships, providing a more structured representation of the channel. Additionally, **bucket-based batching** is employed to efficiently handle variable-sized inputs without excessive padding, ensuring memory-efficient training and inference. These modifications enable LWM 1.1 to extract meaningful embeddings from a wide range of wireless scenarios, improving its applicability across different system configurations.
|
|
|
69 |
</table>
|
70 |
-->
|
71 |
|
72 |
+
### 🎥 LWM Tutorial Series
|
73 |
+
|
74 |
+
Explore LWM concepts and applications in this compact video series:
|
75 |
+
|
76 |
+
<table>
|
77 |
+
<tr>
|
78 |
+
<td align="center">
|
79 |
+
<a href="https://www.youtube.com/watch?v=3sxJR86EFOo" target="_blank">
|
80 |
+
<img src="https://img.youtube.com/vi/3sxJR86EFOo/0.jpg" width="180"/>
|
81 |
+
<div style="margin-top:4px;padding:4px 12px;background:#f97316;color:white;border-radius:6px;font-weight:600;">▶ Watch</div>
|
82 |
+
</a>
|
83 |
+
</td>
|
84 |
+
<td align="center">
|
85 |
+
<a href="https://www.youtube.com/watch?v=Coqcya9NzFs" target="_blank">
|
86 |
+
<img src="https://img.youtube.com/vi/Coqcya9NzFs/0.jpg" width="180"/>
|
87 |
+
<div style="margin-top:4px;padding:4px 12px;background:#f97316;color:white;border-radius:6px;font-weight:600;">▶ Watch</div>
|
88 |
+
</a>
|
89 |
+
</td>
|
90 |
+
<td align="center">
|
91 |
+
<a href="https://www.youtube.com/watch?v=e9KvAXMUuQg" target="_blank">
|
92 |
+
<img src="https://img.youtube.com/vi/e9KvAXMUuQg/0.jpg" width="180"/>
|
93 |
+
<div style="margin-top:4px;padding:4px 12px;background:#f97316;color:white;border-radius:6px;font-weight:600;">▶ Watch</div>
|
94 |
+
</a>
|
95 |
+
</td>
|
96 |
+
</tr>
|
97 |
+
<tr>
|
98 |
+
<td align="center">
|
99 |
+
<a href="https://www.youtube.com/watch?v=ZB5WVvo6q6U" target="_blank">
|
100 |
+
<img src="https://img.youtube.com/vi/ZB5WVvo6q6U/0.jpg" width="180"/>
|
101 |
+
<div style="margin-top:4px;padding:4px 12px;background:#f97316;color:white;border-radius:6px;font-weight:600;">▶ Watch</div>
|
102 |
+
</a>
|
103 |
+
</td>
|
104 |
+
<td align="center">
|
105 |
+
<a href="https://www.youtube.com/watch?v=5oNnJjos0mo" target="_blank">
|
106 |
+
<img src="https://img.youtube.com/vi/5oNnJjos0mo/0.jpg" width="180"/>
|
107 |
+
<div style="margin-top:4px;padding:4px 12px;background:#f97316;color:white;border-radius:6px;font-weight:600;">▶ Watch</div>
|
108 |
+
</a>
|
109 |
+
</td>
|
110 |
+
<td align="center">
|
111 |
+
<a href="https://www.youtube.com/watch?v=_RObWck3MMw" target="_blank">
|
112 |
+
<img src="https://img.youtube.com/vi/_RObWck3MMw/0.jpg" width="180"/>
|
113 |
+
<div style="margin-top:4px;padding:4px 12px;background:#f97316;color:white;border-radius:6px;font-weight:600;">▶ Watch</div>
|
114 |
+
</a>
|
115 |
+
</td>
|
116 |
+
</tr>
|
117 |
+
</table>
|
118 |
+
|
119 |
### **How is LWM 1.1 built?**
|
120 |
|
121 |
LWM 1.1 is a **transformer-based architecture** designed to model **spatial and frequency dependencies** in wireless channel data. It utilizes an enhanced **Masked Channel Modeling (MCM)** pretraining approach, with an increased masking ratio to improve feature learning and generalization. The introduction of **2D patch segmentation** allows the model to jointly process spatial (antenna) and frequency (subcarrier) relationships, providing a more structured representation of the channel. Additionally, **bucket-based batching** is employed to efficiently handle variable-sized inputs without excessive padding, ensuring memory-efficient training and inference. These modifications enable LWM 1.1 to extract meaningful embeddings from a wide range of wireless scenarios, improving its applicability across different system configurations.
|