Update README.md
Browse files
README.md
CHANGED
@@ -38,6 +38,16 @@ LWM-v1.1 is designed to be seamlessly integrated into downstream tasks as a sour
|
|
38 |
- **Broad Generalization**: Trained on a larger, more diverse dataset for reliable performance across environments.
|
39 |
- **Task Adaptability**: Fine-tuning options enable seamless integration into a wide range of applications.
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
---
|
42 |
|
43 |
## **Overview of Main Changes in LWM-v1.1**
|
@@ -475,7 +485,22 @@ chs = lwm_inference(
|
|
475 |
)
|
476 |
```
|
477 |
|
478 |
-
This generates embeddings or visualizations, depending on your configuration.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
|
480 |
---
|
481 |
|
|
|
38 |
- **Broad Generalization**: Trained on a larger, more diverse dataset for reliable performance across environments.
|
39 |
- **Task Adaptability**: Fine-tuning options enable seamless integration into a wide range of applications.
|
40 |
|
41 |
+
For example, the following figure demonstrates the advantages of using **LWM-v1.1-based highly compact CLS embeddings** and **high-dimensional channel embeddings** over raw channels for the LoS/NLoS classification task. The raw dataset is derived from channels of size (128, 32) between BS 3 and 8,299 users in the densified Denver scenario of the DeepMIMO dataset.
|
42 |
+
|
43 |
+
<p align="center">
|
44 |
+
<img src="https://huggingface.co/wi-lab/lwm-v1.1/resolve/main/images/los_perf.png" alt="LoS/NLoS Classification Performance" width="800"/>
|
45 |
+
</p>
|
46 |
+
|
47 |
+
<p align="center">
|
48 |
+
<strong>Figure:</strong> LoS/NLoS classification performance comparison
|
49 |
+
</p>
|
50 |
+
|
51 |
---
|
52 |
|
53 |
## **Overview of Main Changes in LWM-v1.1**
|
|
|
485 |
)
|
486 |
```
|
487 |
|
488 |
+
This generates embeddings or visualizations, depending on your configuration. For example, the following figures show the 2D T-SNE representations of original, embedding, and fine-tuned embedding spaces for the LoS/NLoS classification and beam prediction tasks.
|
489 |
+
|
490 |
+
### **LoS/NLoS Classification Task**
|
491 |
+
|
492 |
+
|  |  |  |
|
493 |
+
|:---------------------------------------------:|:---------------------------------------------:|:---------------------------------------------:|
|
494 |
+
| **Raw Channels** | **General-purpose Embeddings** | **Task-specific Embeddings** |
|
495 |
+
|
496 |
+
---
|
497 |
+
|
498 |
+
### **Beam Prediction Task**
|
499 |
+
|
500 |
+
|  |  |  |
|
501 |
+
|:---------------------------------------------:|:---------------------------------------------:|:---------------------------------------------:|
|
502 |
+
| **Raw Channels** | **General-purpose Embeddings** | **Task-specific Embeddings** |
|
503 |
+
|
504 |
|
505 |
---
|
506 |
|