wi-lab commited on
Commit
03744ab
·
verified ·
1 Parent(s): d6f7a55

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -6
README.md CHANGED
@@ -299,12 +299,9 @@ If you plan to use custom datasets, please ensure that your complex channel cont
299
  ```python
300
  import numpy as np
301
  dataset_repo_url = "https://huggingface.co/datasets/wi-lab/lwm" # Base URL for dataset repo
302
- scenario_names = np.array([
303
- "city_18_denver", "city_15_indianapolis", "city_19_oklahoma",
304
- "city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
305
- ])
306
 
307
- scenario_idxs = np.array([3]) # Select the scenario index
308
  selected_scenario_names = scenario_names[scenario_idxs]
309
 
310
  # Clone the requested scenarios
@@ -373,7 +370,7 @@ visualization_method = ["pca", "umap", "tsne"][2] # Default: TSNE
373
  input_types = ["cls_emb", "channel_emb", "raw"] # Supported input types
374
  train_ratios = [.001, .01, .05, .1, .25, .5, .8] # Fraction of data for training
375
  fine_tuning_status = [None, ["layers.8", "layers.9", "layers.10", "layers.11"], "full"] # Fine-tuning configurations
376
- selected_scenario_names = [scenarios_list()[18]] # Choose a specific scenario
377
 
378
  preprocessed_data, labels, raw_chs = tokenizer(
379
  selected_scenario_names,
 
299
  ```python
300
  import numpy as np
301
  dataset_repo_url = "https://huggingface.co/datasets/wi-lab/lwm" # Base URL for dataset repo
302
+ scenario_names = np.array(["city_6_miami])
 
 
 
303
 
304
+ scenario_idxs = np.array([0]) # Select the scenario index
305
  selected_scenario_names = scenario_names[scenario_idxs]
306
 
307
  # Clone the requested scenarios
 
370
  input_types = ["cls_emb", "channel_emb", "raw"] # Supported input types
371
  train_ratios = [.001, .01, .05, .1, .25, .5, .8] # Fraction of data for training
372
  fine_tuning_status = [None, ["layers.8", "layers.9", "layers.10", "layers.11"], "full"] # Fine-tuning configurations
373
+ selected_scenario_names = [scenarios_list()[6]] # Choose a specific scenario
374
 
375
  preprocessed_data, labels, raw_chs = tokenizer(
376
  selected_scenario_names,