|
|
|
""" |
|
Created on Fri Sep 13 19:23:54 2024 |
|
|
|
This script defines the LWM model architecture. |
|
|
|
@author: Sadjad Alikhani |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
class LayerNormalization(nn.Module): |
|
def __init__(self, d_model: int, eps: float = 1e-6) -> None: |
|
super().__init__() |
|
self.eps = eps |
|
self.alpha = nn.Parameter(torch.ones(d_model)) |
|
self.bias = nn.Parameter(torch.zeros(d_model)) |
|
|
|
def forward(self, x): |
|
mean = x.mean(dim=-1, keepdim=True) |
|
std = x.std(dim=-1, keepdim=True) |
|
return self.alpha * (x - mean) / (std + self.eps) + self.bias |
|
|
|
|
|
class Embedding(nn.Module): |
|
def __init__(self, element_length, d_model, max_len=513): |
|
super().__init__() |
|
self.element_length = element_length |
|
self.d_model = d_model |
|
self.proj = nn.Linear(element_length, d_model) |
|
self.pos_embed = nn.Embedding(max_len, d_model) |
|
self.norm = LayerNormalization(d_model) |
|
|
|
def forward(self, x): |
|
seq_len = x.size(1) |
|
pos = torch.arange(seq_len, dtype=torch.long, device=x.device) |
|
pos_encodings = self.pos_embed(pos) |
|
tok_emb = self.proj(x.float()) |
|
embedding = tok_emb + pos_encodings |
|
return self.norm(embedding) |
|
|
|
|
|
class ScaledDotProductAttention(nn.Module): |
|
def __init__(self, d_k): |
|
super().__init__() |
|
self.d_k = d_k |
|
|
|
def forward(self, Q, K, V): |
|
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(self.d_k) |
|
attn = F.softmax(scores, dim=-1) |
|
context = torch.matmul(attn, V) |
|
return context, attn |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, d_model, n_heads, dropout): |
|
super().__init__() |
|
self.d_k = d_model // n_heads |
|
self.d_v = d_model // n_heads |
|
self.n_heads = n_heads |
|
self.W_Q = nn.Linear(d_model, self.d_k * n_heads) |
|
self.W_K = nn.Linear(d_model, self.d_k * n_heads) |
|
self.W_V = nn.Linear(d_model, self.d_v * n_heads) |
|
self.linear = nn.Linear(n_heads * self.d_v, d_model) |
|
self.dropout = nn.Dropout(dropout) |
|
self.scaled_dot_attn = ScaledDotProductAttention(self.d_k) |
|
|
|
def forward(self, Q, K, V): |
|
residual, batch_size = Q, Q.size(0) |
|
q_s = self.W_Q(Q).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2) |
|
k_s = self.W_K(K).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2) |
|
v_s = self.W_V(V).view(batch_size, -1, self.n_heads, self.d_v).transpose(1, 2) |
|
|
|
context, attn = self.scaled_dot_attn(q_s, k_s, v_s) |
|
output = context.transpose(1, 2).contiguous().view(batch_size, -1, self.n_heads * self.d_v) |
|
output = self.linear(output) |
|
return residual + self.dropout(output), attn |
|
|
|
|
|
class PoswiseFeedForwardNet(nn.Module): |
|
def __init__(self, d_model, d_ff, dropout): |
|
super().__init__() |
|
self.fc1 = nn.Linear(d_model, d_ff) |
|
self.fc2 = nn.Linear(d_ff, d_model) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
return self.fc2(self.dropout(F.relu(self.fc1(x)))) |
|
|
|
|
|
class EncoderLayer(nn.Module): |
|
def __init__(self, d_model, n_heads, d_ff, dropout): |
|
super().__init__() |
|
self.enc_self_attn = MultiHeadAttention(d_model, n_heads, dropout) |
|
self.pos_ffn = PoswiseFeedForwardNet(d_model, d_ff, dropout) |
|
self.norm1 = LayerNormalization(d_model) |
|
self.norm2 = LayerNormalization(d_model) |
|
|
|
def forward(self, enc_inputs): |
|
|
|
attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs) |
|
attn_outputs = self.norm1(enc_inputs + attn_outputs) |
|
|
|
|
|
ff_outputs = self.pos_ffn(attn_outputs) |
|
enc_outputs = self.norm2(attn_outputs + ff_outputs) |
|
|
|
return enc_outputs, attn |
|
|
|
|
|
class lwm(nn.Module): |
|
def __init__(self, element_length=32, d_model=128, n_layers=12, max_len=513, n_heads=8, dropout=0.1): |
|
super().__init__() |
|
self.embedding = Embedding(element_length, d_model, max_len) |
|
self.layers = nn.ModuleList( |
|
[EncoderLayer(d_model, n_heads, d_model*4, dropout) for _ in range(n_layers)] |
|
) |
|
self.linear = nn.Linear(d_model, d_model) |
|
self.norm = LayerNormalization(d_model) |
|
|
|
embed_weight = self.embedding.proj.weight |
|
_, n_dim = embed_weight.size() |
|
self.decoder = nn.Linear(d_model, n_dim, bias=False) |
|
self.decoder_bias = nn.Parameter(torch.zeros(n_dim)) |
|
|
|
@classmethod |
|
def from_pretrained(cls, ckpt_name='model_weights.pth', device='cuda'): |
|
model = cls().to(device) |
|
model.load_state_dict(torch.load(ckpt_name, map_location=device)) |
|
print(f"Model loaded successfully from {ckpt_name}") |
|
return model |
|
|
|
def forward(self, input_ids, masked_pos=None): |
|
|
|
output = self.embedding(input_ids) |
|
attention_maps = [] |
|
|
|
|
|
for layer in self.layers: |
|
output, attn = layer(output) |
|
attention_maps.append(attn) |
|
|
|
|
|
if masked_pos is not None: |
|
masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1)) |
|
h_masked = torch.gather(output, 1, masked_pos) |
|
h_masked = self.norm(F.relu(self.linear(h_masked))) |
|
logits_lm = self.decoder(h_masked) + self.decoder_bias |
|
return logits_lm, output, attention_maps |
|
else: |
|
return output, attention_maps |
|
|