|
|
|
"""
|
|
Created on Fri Jan 10 11:11:58 2025
|
|
|
|
This script evaluates downstream task performance by comparing models trained
|
|
on raw channel representations versus those trained on LWM embeddings.
|
|
|
|
@author: Sadjad Alikhani
|
|
"""
|
|
|
|
from input_preprocess import tokenizer, scenarios_list
|
|
from inference import lwm_inference
|
|
from utils import prepare_loaders
|
|
from train import finetune
|
|
import lwm_model
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import warnings
|
|
warnings.filterwarnings("ignore", category=UserWarning)
|
|
|
|
n_beams = 16
|
|
task = ['Beam Prediction', 'LoS/NLoS Classification'][1]
|
|
task_type = ["classification", "regression"][0]
|
|
visualization_method = ["pca", "umap", "tsne"][2]
|
|
input_types = ["cls_emb", "channel_emb", "raw"]
|
|
train_ratios = [.001, .01, .05, .1, .25, .5, .8]
|
|
fine_tuning_status = [None, ["layers.8", "layers.9", "layers.10", "layers.11"], "full"]
|
|
selected_scenario_names = [scenarios_list()[6]]
|
|
preprocessed_data, labels, raw_chs = tokenizer(
|
|
selected_scenario_names,
|
|
bs_idxs=[3],
|
|
load_data=False,
|
|
task=task,
|
|
n_beams=n_beams,
|
|
manual_data=None)
|
|
|
|
gpu_ids = [0]
|
|
device = torch.device("cuda:0")
|
|
model = lwm_model.lwm().to(device)
|
|
|
|
model_name = "model.pth"
|
|
state_dict = torch.load(f"models/{model_name}", map_location=device)
|
|
new_state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
|
|
model.load_state_dict(new_state_dict)
|
|
|
|
model = nn.DataParallel(model, gpu_ids)
|
|
print(f"Model loaded successfully on GPU {device.index}")
|
|
|
|
chs = lwm_inference(
|
|
model,
|
|
preprocessed_data,
|
|
input_type="cls_emb",
|
|
device=device,
|
|
batch_size=64,
|
|
visualization=False,
|
|
labels=labels,
|
|
visualization_method=visualization_method)
|
|
|
|
results = np.zeros((len(fine_tuning_status), len(input_types), len(train_ratios)))
|
|
for fine_tuning_stat_idx, fine_tuning_stat in enumerate(fine_tuning_status):
|
|
for input_type_idx, input_type in enumerate(input_types):
|
|
|
|
if input_type == "raw" and fine_tuning_stat is not None:
|
|
continue
|
|
|
|
selected_patches_idxs = None
|
|
for train_ratio_idx, train_ratio in enumerate(train_ratios):
|
|
|
|
print(f"\nfine-tuning status: {fine_tuning_stat}")
|
|
print(f"input type: {input_type}")
|
|
print(f"train ratio: {train_ratio}\n")
|
|
|
|
|
|
train_loader, val_loader, samples, target = prepare_loaders(
|
|
preprocessed_data=preprocessed_data,
|
|
labels=labels,
|
|
selected_patches_idxs=selected_patches_idxs,
|
|
input_type=input_type,
|
|
task_type=task_type,
|
|
train_ratio=train_ratio,
|
|
batch_size=128,
|
|
seed=42
|
|
)
|
|
|
|
|
|
fine_tuned_model, best_model_path, train_losses, val_losses, f1_scores, attn_maps_ft = finetune(
|
|
base_model=model,
|
|
train_loader=train_loader,
|
|
val_loader=val_loader,
|
|
task_type=task_type,
|
|
input_type=input_type,
|
|
num_classes=n_beams if task=='Beam Prediction' else 2 if task=='LoS/NLoS Classification' else None,
|
|
output_dim=target.shape[-1] if task_type =='regression' else None,
|
|
use_custom_head=True,
|
|
fine_tune_layers=fine_tuning_stat,
|
|
optimizer_config={"lr": 1e-3},
|
|
epochs=15,
|
|
device=device,
|
|
task=task
|
|
)
|
|
|
|
results[fine_tuning_stat_idx][input_type_idx][train_ratio_idx] = f1_scores[-1]
|
|
|
|
markers = ['o', 's', 'D']
|
|
labels = ['CLS Emb', 'CHS Emb', 'Raw']
|
|
fine_tuning_status_labels = ['No FT', 'Partial FT', 'Full FT']
|
|
line_styles = ['-', '--', ':']
|
|
colors = plt.cm.viridis(np.linspace(0, 0.8, len(labels)))
|
|
plt.figure(figsize=(12, 8), dpi=500)
|
|
for ft_idx, (ft_status_label, line_style) in enumerate(zip(fine_tuning_status_labels, line_styles)):
|
|
for idx, (marker, label, color) in enumerate(zip(markers, labels, colors)):
|
|
|
|
if label == "Raw" and ft_status_label != "No FT":
|
|
continue
|
|
|
|
plot_label = label if label != "Raw Channels" or ft_status_label != "No Fine-Tuning" else "Raw Channels"
|
|
plt.plot(
|
|
train_ratios,
|
|
results[ft_idx, idx],
|
|
marker=marker,
|
|
linestyle=line_style,
|
|
label=f"{plot_label} ({ft_status_label})" if label != "Raw Channels" else plot_label,
|
|
color=color,
|
|
linewidth=3,
|
|
markersize=9
|
|
)
|
|
plt.xscale('log')
|
|
plt.xlabel("Train Ratio", fontsize=20)
|
|
plt.ylabel("F1-Score", fontsize=20)
|
|
plt.legend(fontsize=17, loc="best")
|
|
plt.grid(True, linestyle="--", alpha=0.7)
|
|
plt.xticks(fontsize=17)
|
|
plt.yticks(fontsize=17)
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
chs = lwm_inference(
|
|
fine_tuned_model.model,
|
|
preprocessed_data,
|
|
input_type="cls_emb",
|
|
device=device,
|
|
batch_size=64,
|
|
visualization=False,
|
|
labels=labels,
|
|
visualization_method=visualization_method) |