File size: 32,913 Bytes
8920c6e 5b7442b 8920c6e 5b7442b 71ed2da 8920c6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 |
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 13 16:13:29 2024
This script generates preprocessed data from wireless communication scenarios,
including channel generation, patch generation, masking, and preparing raw
channels for the Transformer-based LWM model.
@author: Sadjad Alikhani
"""
import numpy as np
import os
from tqdm import tqdm
import time
import pickle
import DeepMIMOv3
import torch
from collections import defaultdict
from utils import generate_gaussian_noise, plot_coverage
#%% Scenarios List
def scenarios_list():
scen_list = np.array([
'city_0_newyork',
'city_1_losangeles',
'city_2_chicago',
'city_3_houston',
'city_4_phoenix',
'city_5_philadelphia',
'city_6_miami',
'city_7_sandiego',
'city_8_dallas',
'city_9_sanfrancisco',
'city_10_austin',
'city_11_santaclara',
'city_12_fortworth',
'city_13_columbus',
'city_14_charlotte',
'city_15_indianapolis',
'city_16_sanfrancisco',
'city_17_seattle',
'city_18_denver',
'city_19_oklahoma',
'asu_campus1_v1',
'asu_campus1_v2',
'asu_campus1_v3',
'asu_campus1_v4',
'asu_campus1_v5',
'asu_campus1_v6',
'asu_campus1_v7',
'asu_campus1_v8',
'asu_campus1_v9',
'asu_campus1_v10',
'asu_campus1_v11',
'asu_campus1_v12',
'asu_campus1_v13',
'asu_campus1_v14',
'asu_campus1_v15',
'asu_campus1_v16',
'asu_campus1_v17',
'asu_campus1_v18',
'asu_campus1_v19',
'asu_campus1_v20',
'Boston5G_3p5_v1',
'Boston5G_3p5_v2',
'Boston5G_3p5_v3',
'Boston5G_3p5_v4',
'Boston5G_3p5_v5',
'Boston5G_3p5_v6',
'Boston5G_3p5_v7',
'Boston5G_3p5_v8',
'Boston5G_3p5_v9',
'Boston5G_3p5_v10',
'Boston5G_3p5_v11',
'Boston5G_3p5_v12',
'Boston5G_3p5_v13',
'Boston5G_3p5_v14',
'Boston5G_3p5_v15',
'Boston5G_3p5_v16',
'Boston5G_3p5_v17',
'Boston5G_3p5_v18',
'Boston5G_3p5_v19',
'Boston5G_3p5_v20',
'O1_3p5_v1',
'O1_3p5_v2',
'O1_3p5_v3',
'O1_3p5_v4',
'O1_3p5_v5',
'O1_3p5_v6',
'O1_3p5_v7',
'O1_3p5_v8',
'O1_3p5_v9',
'O1_3p5_v10',
'O1_3p5_v11',
'O1_3p5_v12',
'O1_3p5_v13',
'O1_3p5_v14',
'O1_3p5_v15',
'O1_3p5_v16',
'O1_3p5_v17',
'O1_3p5_v18',
'O1_3p5_v19',
'O1_3p5_v20',
'asu_campus1',
'O1_3p5',
'Boston5G_3p5',
'city_0_newyork_v16x64',
'city_1_losangeles_v16x64',
'city_2_chicago_v16x64',
'city_3_houston_v16x64',
'city_4_phoenix_v16x64',
'city_5_philadelphia_v16x64',
'city_6_miami_v16x64',
'city_7_sandiego_v16x64',
'city_8_dallas_v16x64',
'city_9_sanfrancisco_v16x64'
])
return scen_list
#%% Token Generation
def patch_gen(N_ROWS=4, N_COLUMNS=4, selected_scenario_names=None,
manual_data=None, bs_idxs=[1,2,3], load_data=False,
save_dir="data", task="LoS/NLoS Classification",
n_beams=64, o1_bs_idx=[4]):
os.makedirs(save_dir, exist_ok=True)
if manual_data is not None:
patches = patch_maker(np.expand_dims(np.array(manual_data), axis=1))
else:
deepmimo_data = []
for scenario_name in selected_scenario_names:
if "O1" in scenario_name: # make an exception for bs idxs of the o1 scenario
if o1_bs_idx is None:
bs_idxs = [4, 15]
else:
bs_idxs = o1_bs_idx
for bs_idx in bs_idxs:
if has_version_suffix(scenario_name) and bs_idx in [2,3]:
continue
if not load_data:
print(f"\nGenerating data for scenario: {scenario_name}, BS #{bs_idx}")
data, n_ant_bs, n_subcarriers = DeepMIMO_data_gen(scenario_name, bs_idx)
file_name = f"{save_dir}/{scenario_name}_ant{n_ant_bs}_sub{n_subcarriers}_bs{bs_idx}.npy"
np.save(file_name, data)
print(f"Data saved to {file_name}")
deepmimo_data.append(data)
else:
n_ant_bs, n_subcarriers = parametersv2(scenario_name, bs_idx)
print(f"\nLoading data for scenario: {scenario_name}, BS #{bs_idx}")
file_name = f"{save_dir}/{scenario_name}_ant{n_ant_bs}_sub{n_subcarriers}_bs{bs_idx}.npy"
data = np.load(file_name, allow_pickle=True).item()
print(f"Data loaded from {file_name}")
deepmimo_data.append(data)
cleaned_deepmimo_data = [deepmimo_data_cleaning(deepmimo_data[scenario_idx]) for scenario_idx in range(len(deepmimo_data))] #n_scenarios*n_bs_idxs
patches = [patch_maker(cleaned_deepmimo_data[scenario_idx], N_ROWS, N_COLUMNS) for scenario_idx in range(len(deepmimo_data))]
raw_chs = torch.tensor(cleaned_deepmimo_data[0]).squeeze(1)
raw_chs = raw_chs.view(raw_chs.size(0), -1)
raw_chs = torch.hstack((raw_chs.real, raw_chs.imag))
if task:
labels = [label_gen(task, deepmimo_data[scenario_idx], selected_scenario_names[scenario_idx], n_beams=n_beams) for scenario_idx in range(len(deepmimo_data))]
return patches, torch.tensor(labels[0]), raw_chs.view(raw_chs.size(0), -1)
else:
return patches, raw_chs.view(raw_chs.size(0), -1)
#%%
def tokenizer(selected_scenario_names,
bs_idxs=[1,2,3],
load_data=False,
task="LoS/NLoS Classification",
n_beams=64,
MAX_LEN=513,
masking_percent=.40,
mask=False,
manual_data=None,
seed=42,
snr=None):
patches, labels, raw_chs = patch_gen(
selected_scenario_names=selected_scenario_names,
manual_data=manual_data,
bs_idxs=bs_idxs,
load_data=load_data,
task=task,
n_beams=n_beams
)
patches = [patch for patch_list in patches for patch in patch_list]
print("Total number of samples:", len(patches))
grouped_data = defaultdict(list) # Group samples by sequence length
grouped_data_2 = []
for user_idx in tqdm(range(len(patches)), desc="Processing items"):
patch_size = patches[user_idx].shape[1]
n_patches = patches[user_idx].shape[0]
n_masks_half = int(masking_percent * n_patches)
word2id = {
'[CLS]': 0.2 * np.ones((patch_size)),
'[MASK]': 0.1 * np.ones((patch_size))
}
sample = make_sample(
user_idx, patches, word2id, n_patches, n_masks_half, patch_size, MAX_LEN, mask=mask, seed=seed
)
if mask:
seq_length = len(sample[0])
grouped_data[seq_length].append(sample)
else:
grouped_data_2.append(sample)
if mask:
# Normalize keys to 0, 1, 2, ...
normalized_grouped_data = {i: grouped_data[key] for i, key in enumerate(sorted(grouped_data.keys()))}
else:
normalized_grouped_data = torch.stack(grouped_data_2, dim=0)
# normalized_grouped_data = grouped_data_2
if snr is not None:
normalized_grouped_data += generate_gaussian_noise(normalized_grouped_data, snr)
# normalized_grouped_data = {i: grouped_data[key] for i, key in enumerate(sorted(grouped_data.keys()))}
return normalized_grouped_data, labels, raw_chs
#%% REMOVE ZERO CHANNELS AND SCALE
def deepmimo_data_cleaning(deepmimo_data):
idxs = np.where(deepmimo_data['user']['LoS'] != -1)[0]
cleaned_deepmimo_data = deepmimo_data['user']['channel'][idxs]
return np.array(cleaned_deepmimo_data) * 1e6
#%%
def make_sample(user_idx, patch, word2id, n_patches, n_masks, patch_size, MAX_LEN, mask=True, seed=None):
if seed is not None:
np.random.seed(seed)
# Step 1: Retrieve tokens and prepend [CLS]
tokens = patch[user_idx]
input_ids = np.vstack((word2id['[CLS]'], tokens))
# Step 2: Mask real and imaginary patches
tokens_size = int(n_patches) # int(n_patches / 2)
masked_pos = np.random.choice(range(1, tokens_size), size=n_masks, replace=False)
masked_tokens = []
for pos in masked_pos:
original_masked_tokens = input_ids[pos].copy()
masked_tokens.append(original_masked_tokens)
if mask:
rnd_num = np.random.rand()
if rnd_num < 0.1:
input_ids[pos] = np.random.rand(patch_size) # Replace with random values
elif rnd_num < 0.9:
input_ids[pos] = word2id['[MASK]'] # Replace with [MASK]
if not mask:
return torch.tensor(input_ids)
else:
return [input_ids, masked_tokens, masked_pos]
#%% Patch GENERATION
def patch_maker(original_ch, patch_rows, patch_cols):
# Step 1: Remove the singleton channel dimension
n_samples, _, n_rows, n_cols = original_ch.shape # Unpack shape
original_ch = original_ch[:, 0] # Remove the singleton dimension
# Step 2: Split into real and imaginary parts and interleave them
flat_real = original_ch.real
flat_imag = original_ch.imag
# Interleave real and imaginary parts along the last axis
interleaved = np.empty((n_samples, n_rows, n_cols * 2), dtype=np.float32)
interleaved[:, :, 0::2] = flat_real
interleaved[:, :, 1::2] = flat_imag
# Step 3: Compute the number of patches along rows and columns
n_patches_rows = int(np.ceil(n_rows / patch_rows))
n_patches_cols = int(np.ceil(n_cols / patch_cols))
# Step 4: Pad the matrix if necessary to make it divisible by patch size
padded_rows = n_patches_rows * patch_rows - n_rows
padded_cols = n_patches_cols * patch_cols - n_cols
if padded_rows > 0 or padded_cols > 0:
interleaved = np.pad(
interleaved,
((0, 0), (0, padded_rows), (0, padded_cols * 2)), # Double padding for interleaved axis
mode='constant',
constant_values=0,
)
# Step 5: Create patches by dividing into blocks
n_samples, padded_rows, padded_cols = interleaved.shape
padded_cols //= 2 # Adjust for interleaving (real and imaginary parts count as one)
patches = []
for i in range(0, padded_rows, patch_rows):
for j in range(0, padded_cols, patch_cols):
patch = interleaved[:, i:i + patch_rows, j * 2:(j + patch_cols) * 2]
patches.append(patch.reshape(n_samples, -1)) # Flatten each patch
# Step 6: Stack patches to form the final array
patches = np.stack(patches, axis=1) # Shape: (num_samples, n_patches, patch_rows * patch_cols * 2)
return patches
#%% Data Generation for Scenario Areas
def DeepMIMO_data_gen(scenario, bs_idx):
import DeepMIMOv3
parameters, row_column_users = get_parameters(scenario, bs_idx)
deepMIMO_dataset = DeepMIMOv3.generate_data(parameters)
if "O1" in scenario:
hops = [2, 2]
else:
hops = [1, 1]
uniform_idxs = uniform_sampling(deepMIMO_dataset, hops, len(parameters['user_rows']),
users_per_row=row_column_users[scenario]['n_per_row'])
data = select_by_idx(deepMIMO_dataset, uniform_idxs)[0]
n_ant_bs = parameters['bs_antenna']['shape'][0]
n_subcarriers = parameters['OFDM']['subcarriers']
return data, n_ant_bs, n_subcarriers
#%%
def parametersv2(scenario, bs_idx):
parameters, _ = get_parameters(scenario, bs_idx)
n_ant_bs = parameters['bs_antenna']['shape'][0]
n_subcarriers = parameters['OFDM']['subcarriers']
return n_ant_bs, n_subcarriers
#%%%
def get_parameters(scenario, bs_idx=1):
n_ant_ue = 1
scs = 30e3
row_column_users = scenario_prop()
parameters = DeepMIMOv3.default_params()
parameters['dataset_folder'] = './scenarios'
parameters['scenario'] = scenario.split("_v")[0]
n_ant_bs = row_column_users[scenario]['n_ant_bs']
n_subcarriers = row_column_users[scenario]['n_subcarriers']
parameters['active_BS'] = np.array([bs_idx])
if isinstance(row_column_users[scenario]['n_rows'], int):
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'])
else:
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'][0],
row_column_users[scenario]['n_rows'][1])
parameters['bs_antenna']['shape'] = np.array([n_ant_bs, 1]) # Horizontal, Vertical
parameters['bs_antenna']['rotation'] = np.array([0,0,-135]) # (x,y,z)
parameters['ue_antenna']['shape'] = np.array([n_ant_ue, 1])
parameters['enable_BS2BS'] = False
parameters['OFDM']['subcarriers'] = n_subcarriers
parameters['OFDM']['selected_subcarriers'] = np.arange(n_subcarriers)
parameters['OFDM']['bandwidth'] = scs * n_subcarriers / 1e9
parameters['num_paths'] = 20
return parameters, row_column_users
#%% Sampling and Data Selection
def uniform_sampling(dataset, sampling_div, n_rows, users_per_row):
cols = np.arange(users_per_row, step=sampling_div[0])
rows = np.arange(n_rows, step=sampling_div[1])
uniform_idxs = np.array([j + i * users_per_row for i in rows for j in cols])
return uniform_idxs
def select_by_idx(dataset, idxs):
dataset_t = [] # Trimmed dataset
for bs_idx in range(len(dataset)):
dataset_t.append({})
for key in dataset[bs_idx].keys():
dataset_t[bs_idx]['location'] = dataset[bs_idx]['location']
dataset_t[bs_idx]['user'] = {k: dataset[bs_idx]['user'][k][idxs] for k in dataset[bs_idx]['user']}
return dataset_t
#%%
def inverse_patch_maker(patches, original_shape, patch_rows, patch_cols):
"""
Reconstructs the original channel matrix from patches.
Args:
patches (numpy array): Patches of shape (num_samples, n_patches, patch_rows * patch_cols * 2).
original_shape (tuple): Original shape of the channel matrix (num_samples, 1, n_rows, n_cols).
patch_rows (int): Number of rows in each patch.
patch_cols (int): Number of columns in each patch.
Returns:
numpy array: Reconstructed complex-valued channel matrix of shape (num_samples, 1, n_rows, n_cols).
"""
n_samples, n_patches, patch_size = patches.shape
_, _, n_rows, n_cols = original_shape
# Ensure patch dimensions match
assert patch_rows * patch_cols * 2 == patch_size, "Patch size mismatch with provided dimensions."
# Compute the number of patches along rows and columns
n_patches_rows = int(np.ceil(n_rows / patch_rows))
n_patches_cols = int(np.ceil(n_cols / patch_cols))
# Reassemble interleaved array from patches
interleaved = np.zeros((n_samples, n_patches_rows * patch_rows, n_patches_cols * patch_cols * 2), dtype=np.float32)
patch_idx = 0
for i in range(n_patches_rows):
for j in range(n_patches_cols):
patch = patches[:, patch_idx, :].reshape(n_samples, patch_rows, patch_cols * 2)
interleaved[:, i * patch_rows:(i + 1) * patch_rows, j * patch_cols * 2:(j + 1) * patch_cols * 2] = patch
patch_idx += 1
# Remove padding if necessary
interleaved = interleaved[:, :n_rows, :n_cols * 2]
# Separate real and imaginary parts
flat_real = interleaved[:, :, 0::2]
flat_imag = interleaved[:, :, 1::2]
# Reconstruct the complex-valued original channel
reconstructed = flat_real + 1j * flat_imag
# Add the singleton channel dimension back
reconstructed = reconstructed[:, np.newaxis, :, :] # Shape: (num_samples, 1, n_rows, n_cols)
return reconstructed
#%%
def label_gen(task, data, scenario, n_beams=64):
idxs = np.where(data['user']['LoS'] != -1)[0]
if task == 'LoS/NLoS Classification':
label = data['user']['LoS'][idxs]
losChs = np.where(data['user']['LoS'] == -1, np.nan, data['user']['LoS'])
plot_coverage(data['user']['location'], losChs, cbar_title='LoS status')
elif task == 'Beam Prediction':
parameters, row_column_users = get_parameters(scenario, bs_idx=1)
n_users = len(data['user']['channel'])
n_subbands = 1
fov = 180
# Setup Beamformers
beam_angles = np.around(np.arange(-fov/2, fov/2+.1, fov/(n_beams-1)), 2)
F1 = np.array([steering_vec(parameters['bs_antenna']['shape'],
phi=azi*np.pi/180,
kd=2*np.pi*parameters['bs_antenna']['spacing']).squeeze()
for azi in beam_angles])
full_dbm = np.zeros((n_beams, n_subbands, n_users), dtype=float)
for ue_idx in tqdm(range(n_users), desc='Computing the channel for each user'):
if data['user']['LoS'][ue_idx] == -1:
full_dbm[:,:,ue_idx] = np.nan
else:
chs = F1 @ data['user']['channel'][ue_idx]
full_linear = np.abs(np.mean(chs.squeeze().reshape((n_beams, n_subbands, -1)), axis=-1))
full_dbm[:,:,ue_idx] = np.around(20*np.log10(full_linear) + 30, 1)
best_beams = np.argmax(np.mean(full_dbm,axis=1), axis=0)
best_beams = best_beams.astype(float)
best_beams[np.isnan(full_dbm[0,0,:])] = np.nan
# max_bf_pwr = np.max(np.mean(full_dbm,axis=1), axis=0)
plot_coverage(data['user']['location'], best_beams, tx_pos=data['location'],
tx_ori=parameters['bs_antenna']['rotation']*np.pi/180,
cbar_title='Best beam index')
label = best_beams[idxs]
return label.astype(int)
#%%
def steering_vec(array, phi=0, theta=0, kd=np.pi):
idxs = DeepMIMOv3.ant_indices(array)
resp = DeepMIMOv3.array_response(idxs, phi, theta+np.pi/2, kd)
return resp / np.linalg.norm(resp)
#%%
import re
def has_version_suffix(s):
pattern = r"_v([1-9]|1[0-9]|20)$"
return bool(re.search(pattern, s))
#%%
def scenario_prop():
row_column_users = {
'city_0_newyork': {
'n_rows': 109,
'n_per_row': 291,
'n_ant_bs': 8,
'n_subcarriers': 32
},
'city_1_losangeles': {
'n_rows': 142,
'n_per_row': 201,
'n_ant_bs': 8,
'n_subcarriers': 64
},
'city_2_chicago': {
'n_rows': 139,
'n_per_row': 200,
'n_ant_bs': 8,
'n_subcarriers': 128
},
'city_3_houston': {
'n_rows': 154,
'n_per_row': 202,
'n_ant_bs': 8,
'n_subcarriers': 256
},
'city_4_phoenix': {
'n_rows': 198,
'n_per_row': 214,
'n_ant_bs': 8,
'n_subcarriers': 512
},
'city_5_philadelphia': {
'n_rows': 239,
'n_per_row': 164,
'n_ant_bs': 8,
'n_subcarriers': 1024
},
'city_6_miami': {
'n_rows': 199,
'n_per_row': 216 ,
'n_ant_bs': 16,
'n_subcarriers': 32
},
'city_7_sandiego': {
'n_rows': 207,
'n_per_row': 176,
'n_ant_bs': 16,
'n_subcarriers': 64
},
'city_8_dallas': {
'n_rows': 207,
'n_per_row': 190,
'n_ant_bs': 16,
'n_subcarriers': 128
},
'city_9_sanfrancisco': {
'n_rows': 196,
'n_per_row': 206,
'n_ant_bs': 16,
'n_subcarriers': 256
},
'city_10_austin': {
'n_rows': 255,
'n_per_row': 137,
'n_ant_bs': 16,
'n_subcarriers': 512
},
'city_11_santaclara': {
'n_rows': 117,
'n_per_row': 285,
'n_ant_bs': 32,
'n_subcarriers': 32
},
'city_12_fortworth': {
'n_rows': 214,
'n_per_row': 179,
'n_ant_bs': 32,
'n_subcarriers': 64
},
'city_13_columbus': {
'n_rows': 178,
'n_per_row': 240,
'n_ant_bs': 32,
'n_subcarriers': 128
},
'city_14_charlotte': {
'n_rows': 216,
'n_per_row': 177,
'n_ant_bs': 32,
'n_subcarriers': 256
},
'city_15_indianapolis': {
'n_rows': 200,
'n_per_row': 196,
'n_ant_bs': 64,
'n_subcarriers': 32
},
'city_16_sanfrancisco': {
'n_rows': 201,
'n_per_row': 208,
'n_ant_bs': 64,
'n_subcarriers': 64
},
'city_17_seattle': {
'n_rows': 185,
'n_per_row': 205,
'n_ant_bs': 64,
'n_subcarriers': 128
},
'city_18_denver': {
'n_rows': 212,
'n_per_row': 204,
'n_ant_bs': 128,
'n_subcarriers': 32
},
'city_19_oklahoma': {
'n_rows': 204,
'n_per_row': 188,
'n_ant_bs': 128,
'n_subcarriers': 64
},
'asu_campus1_v1': {
'n_rows': [0, 1*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 8,
'n_subcarriers': 32
},
'asu_campus1_v2': {
'n_rows': [1*int(321/20), 2*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 8,
'n_subcarriers': 64
},
'asu_campus1_v3': {
'n_rows': [2*int(321/20), 3*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 8,
'n_subcarriers': 128
},
'asu_campus1_v4': {
'n_rows': [3*int(321/20), 4*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 8,
'n_subcarriers': 256
},
'asu_campus1_v5': {
'n_rows': [4*int(321/20), 5*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 8,
'n_subcarriers': 512
},
'asu_campus1_v6': {
'n_rows': [5*int(321/20), 6*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 8,
'n_subcarriers': 1024
},
'asu_campus1_v7': {
'n_rows': [6*int(321/20), 7*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 16,
'n_subcarriers': 32
},
'asu_campus1_v8': {
'n_rows': [7*int(321/20), 8*int(321/20)],
'n_per_row': 411,
'n_ant_bs':16,
'n_subcarriers': 64
},
'asu_campus1_v9': {
'n_rows': [8*int(321/20), 9*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 16,
'n_subcarriers': 128
},
'asu_campus1_v10': {
'n_rows': [9*int(321/20), 10*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 16,
'n_subcarriers': 256
},
'asu_campus1_v11': {
'n_rows': [10*int(321/20), 11*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 16,
'n_subcarriers': 512
},
'asu_campus1_v12': {
'n_rows': [11*int(321/20), 12*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 32,
'n_subcarriers': 32
},
'asu_campus1_v13': {
'n_rows': [12*int(321/20), 13*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 32,
'n_subcarriers': 64
},
'asu_campus1_v14': {
'n_rows': [13*int(321/20), 14*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 32,
'n_subcarriers': 128
},
'asu_campus1_v15': {
'n_rows': [14*int(321/20), 15*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 32,
'n_subcarriers': 256
},
'asu_campus1_v16': {
'n_rows': [15*int(321/20), 16*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 64,
'n_subcarriers': 32
},
'asu_campus1_v17': {
'n_rows': [16*int(321/20), 17*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 64,
'n_subcarriers': 64
},
'asu_campus1_v18': {
'n_rows': [17*int(321/20), 18*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 64,
'n_subcarriers': 128
},
'asu_campus1_v19': {
'n_rows': [18*int(321/20), 19*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 128,
'n_subcarriers': 32
},
'asu_campus1_v20': {
'n_rows': [19*int(321/20), 20*int(321/20)],
'n_per_row': 411,
'n_ant_bs': 128,
'n_subcarriers': 64
},
'Boston5G_3p5_v1': {
'n_rows': [812, 812 + 1*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 8,
'n_subcarriers': 32
},
'Boston5G_3p5_v2': {
'n_rows': [812 + 1*int((1622-812)/20), 812 + 2*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 8,
'n_subcarriers': 64
},
'Boston5G_3p5_v3': {
'n_rows': [812 + 2*int((1622-812)/20), 812 + 3*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 8,
'n_subcarriers': 128
},
'Boston5G_3p5_v4': {
'n_rows': [812 + 3*int((1622-812)/20), 812 + 4*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 8,
'n_subcarriers': 256
},
'Boston5G_3p5_v5': {
'n_rows': [812 + 4*int((1622-812)/20), 812 + 5*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 8,
'n_subcarriers': 512
},
'Boston5G_3p5_v6': {
'n_rows': [812 + 5*int((1622-812)/20), 812 + 6*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 8,
'n_subcarriers': 1024
},
'Boston5G_3p5_v7': {
'n_rows': [812 + 6*int((1622-812)/20), 812 + 7*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 16,
'n_subcarriers': 32
},
'Boston5G_3p5_v8': {
'n_rows': [812 + 7*int((1622-812)/20), 812 + 8*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs':16,
'n_subcarriers': 64
},
'Boston5G_3p5_v9': {
'n_rows': [812 + 8*int((1622-812)/20), 812 + 9*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 16,
'n_subcarriers': 128
},
'Boston5G_3p5_v10': {
'n_rows': [812 + 9*int((1622-812)/20), 812 + 10*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 16,
'n_subcarriers': 256
},
'Boston5G_3p5_v11': {
'n_rows': [812 + 10*int((1622-812)/20), 812 + 11*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 16,
'n_subcarriers': 512
},
'Boston5G_3p5_v12': {
'n_rows': [812 + 11*int((1622-812)/20), 812 + 12*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 32,
'n_subcarriers': 32
},
'Boston5G_3p5_v13': {
'n_rows': [812 + 12*int((1622-812)/20), 812 + 13*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 32,
'n_subcarriers': 64
},
'Boston5G_3p5_v14': {
'n_rows': [812 + 13*int((1622-812)/20), 812 + 14*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 32,
'n_subcarriers': 128
},
'Boston5G_3p5_v15': {
'n_rows': [812 + 14*int((1622-812)/20), 812 + 15*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 32,
'n_subcarriers': 256
},
'Boston5G_3p5_v16': {
'n_rows': [812 + 15*int((1622-812)/20), 812 + 16*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 64,
'n_subcarriers': 32
},
'Boston5G_3p5_v17': {
'n_rows': [812 + 16*int((1622-812)/20), 812 + 17*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 64,
'n_subcarriers': 64
},
'Boston5G_3p5_v18': {
'n_rows': [812 + 17*int((1622-812)/20), 812 + 18*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 64,
'n_subcarriers': 128
},
'Boston5G_3p5_v19': {
'n_rows': [812 + 18*int((1622-812)/20), 812 + 19*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 128,
'n_subcarriers': 32
},
'Boston5G_3p5_v20': {
'n_rows': [812 + 19*int((1622-812)/20), 812 + 20*int((1622-812)/20)],
'n_per_row': 595,
'n_ant_bs': 128,
'n_subcarriers': 64
},
'O1_3p5_v1': {
'n_rows': [0*int(3852/12), 1*int(3852/12)],
'n_per_row': 181,
'n_ant_bs': 8,
'n_subcarriers': 32
},
'O1_3p5_v2': {
'n_rows': [1*int(3852/12), 2*int(3852/12)],
'n_per_row': 181,
'n_ant_bs': 8,
'n_subcarriers': 64
},
'O1_3p5_v3': {
'n_rows': [2*int(3852/12), 3*int(3852/12)],
'n_per_row': 181,
'n_ant_bs': 8,
'n_subcarriers': 128
},
'O1_3p5_v4': {
'n_rows': [3*int(3852/12), 4*int(3852/12)],
'n_per_row': 181,
'n_ant_bs': 8,
'n_subcarriers': 256
},
'O1_3p5_v5': {
'n_rows': [4*int(3852/12), 5*int(3852/12)],
'n_per_row': 181,
'n_ant_bs': 8,
'n_subcarriers': 512
},
'O1_3p5_v6': {
'n_rows': [5*int(3852/12), 6*int(3852/12)],
'n_per_row': 181,
'n_ant_bs': 8,
'n_subcarriers': 1024
},
'O1_3p5_v7': {
'n_rows': [6*int(3852/12), 7*int(3852/12)],
'n_per_row': 181,
'n_ant_bs': 16,
'n_subcarriers': 32
},
'O1_3p5_v8': {
'n_rows': [7*int(3852/12), 8*int(3852/12)],
'n_per_row': 181,
'n_ant_bs': 16,
'n_subcarriers': 64
},
'O1_3p5_v9': {
'n_rows': [8*int(3852/12), 9*int(3852/12)],
'n_per_row': 181,
'n_ant_bs': 16,
'n_subcarriers': 128
},
'O1_3p5_v10': {
'n_rows': [9*int(3852/12), 10*int(3852/12)],
'n_per_row': 181,
'n_ant_bs': 16,
'n_subcarriers': 256
},
'O1_3p5_v11': {
'n_rows': [10*int(3852/12), 11*int(3852/12)],
'n_per_row': 181,
'n_ant_bs': 16,
'n_subcarriers': 512
},
'O1_3p5_v12': {
'n_rows': [11*int(3852/12), 12*int(3852/12)],
'n_per_row': 181,
'n_ant_bs': 32,
'n_subcarriers': 32
},
'O1_3p5_v13': {
'n_rows': [12*int(3852/12)+0*int(1351/10), 12*int(3852/12)+1*int(1351/10)],
'n_per_row': 361,
'n_ant_bs': 32,
'n_subcarriers': 64
},
'O1_3p5_v14': {
'n_rows': [12*int(3852/12)+1*int(1351/10), 12*int(3852/12)+2*int(1351/10)],
'n_per_row': 181,
'n_ant_bs': 32,
'n_subcarriers': 128
},
'O1_3p5_v15': {
'n_rows': [12*int(3852/12)+2*int(1351/10), 12*int(3852/12)+3*int(1351/10)],
'n_per_row': 181,
'n_ant_bs': 32,
'n_subcarriers': 256
},
'O1_3p5_v16': {
'n_rows': [12*int(3852/12)+3*int(1351/10), 12*int(3852/12)+4*int(1351/10)],
'n_per_row': 181,
'n_ant_bs': 64,
'n_subcarriers': 32
},
'O1_3p5_v17': {
'n_rows': [12*int(3852/12)+4*int(1351/10), 12*int(3852/12)+5*int(1351/10)],
'n_per_row': 181,
'n_ant_bs': 64,
'n_subcarriers': 64
},
'O1_3p5_v18': {
'n_rows': [12*int(3852/12)+5*int(1351/10), 12*int(3852/12)+6*int(1351/10)],
'n_per_row': 181,
'n_ant_bs': 64,
'n_subcarriers': 128
},
'O1_3p5_v19': {
'n_rows': [12*int(3852/12)+6*int(1351/10), 12*int(3852/12)+7*int(1351/10)],
'n_per_row': 181,
'n_ant_bs': 128,
'n_subcarriers': 32
},
'O1_3p5_v20': {
'n_rows': [12*int(3852/12)+7*int(1351/10), 12*int(3852/12)+8*int(1351/10)],
'n_per_row': 181,
'n_ant_bs': 128,
'n_subcarriers': 64
},
'city_0_newyork_v16x64': {
'n_rows': 109,
'n_per_row': 291,
'n_ant_bs': 16,
'n_subcarriers': 64
},
'city_1_losangeles_v16x64': {
'n_rows': 142,
'n_per_row': 201,
'n_ant_bs': 16,
'n_subcarriers': 64
},
'city_2_chicago_v16x64': {
'n_rows': 139,
'n_per_row': 200,
'n_ant_bs': 16,
'n_subcarriers': 64
},
'city_3_houston_v16x64': {
'n_rows': 154,
'n_per_row': 202,
'n_ant_bs': 16,
'n_subcarriers': 64
},
'city_4_phoenix_v16x64': {
'n_rows': 198,
'n_per_row': 214,
'n_ant_bs': 16,
'n_subcarriers': 64
},
'city_5_philadelphia_v16x64': {
'n_rows': 239,
'n_per_row': 164,
'n_ant_bs': 16,
'n_subcarriers': 64
},
'city_6_miami_v16x64': {
'n_rows': 199,
'n_per_row': 216,
'n_ant_bs': 16,
'n_subcarriers': 64
},
'city_7_sandiego_v16x64': {
'n_rows': 207,
'n_per_row': 176,
'n_ant_bs': 16,
'n_subcarriers': 64
},
'city_8_dallas_v16x64': {
'n_rows': 207,
'n_per_row': 190,
'n_ant_bs': 16,
'n_subcarriers': 64
},
'city_9_sanfrancisco_v16x64': {
'n_rows': 196,
'n_per_row': 206,
'n_ant_bs': 16,
'n_subcarriers': 64
}}
return row_column_users |