File size: 10,012 Bytes
8920c6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from torch.utils.data import DataLoader, Dataset, random_split, TensorDataset
import torch
import numpy as np
#%%
def create_dataloader(grouped_data, batch_size, shuffle):

    dataloaders = {}

    for seq_length, group in grouped_data.items():
        
        print(f"dataloader in progress ...\nkey: {seq_length}")
        
        ## Uncomment the following line if you run out of memory during pre-training
        # batch_size = batch_size // 8 if seq_length >= 5 else batch_size
        
        # Unpack samples for the current group
        input_ids, masked_tokens, masked_pos = zip(*group)

        # Convert to tensors
        input_ids_tensor = torch.tensor(input_ids, dtype=torch.float32)
        masked_tokens_tensor = torch.tensor(masked_tokens, dtype=torch.float32)
        masked_pos_tensor = torch.tensor(masked_pos, dtype=torch.long)

        # Create TensorDataset and DataLoader
        dataset = TensorDataset(input_ids_tensor, masked_tokens_tensor, masked_pos_tensor)
        dataloaders[seq_length] = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, pin_memory=True)

    return dataloaders
#%%
def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)
#%%
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import umap

def visualize_embeddings(embeddings, labels, method="pca", label=None):
    """

    Visualize embeddings using PCA, UMAP, or t-SNE with color-coded labels.



    Args:

        embeddings (torch.Tensor or np.ndarray): Embeddings to visualize, shape (n_samples, n_features).

        labels (torch.Tensor or np.ndarray): Class labels corresponding to embeddings, shape (n_samples,).

        method (str): Dimensionality reduction method ('pca', 'umap', or 'tsne').

        title (str): Title of the plot.

    """
    # Convert to numpy if input is a torch.Tensor
    if isinstance(embeddings, torch.Tensor):
        embeddings = embeddings.cpu().numpy()
    if isinstance(labels, torch.Tensor):
        labels = labels.cpu().numpy()

    # Apply the selected dimensionality reduction method
    if method.lower() == "pca":
        reducer = PCA(n_components=2)
    elif method.lower() == "umap":
        reducer = umap.UMAP(n_components=2, n_neighbors=16, random_state=42)
    elif method.lower() == "tsne":
        reducer = TSNE(n_components=2, random_state=42, init="random")
    else:
        raise ValueError("Invalid method. Choose from 'pca', 'umap', or 'tsne'.")

    reduced_embeddings = reducer.fit_transform(embeddings)

    # Create a scatter plot with color-coding based on labels
    plt.figure(figsize=(10, 8))
    num_classes = len(np.unique(labels))
    colors = plt.cm.get_cmap("tab10", num_classes)

    for class_idx in range(num_classes):
        class_points = reduced_embeddings[labels == class_idx]
        plt.scatter(
            class_points[:, 0], class_points[:, 1],
            label=f"Class {class_idx}",
            alpha=0.6
        )

    # Customize the plot
    plt.title(f"{label} ({method.upper()})")
    plt.xlabel("Component 1")
    plt.ylabel("Component 2")
    plt.legend()
    plt.show()
#%%
def generate_gaussian_noise(data, snr_db):
    """

    Generate Gaussian noise given an SNR and apply it to the data.



    Args:

        data (torch.Tensor): Input data tensor of shape (n_samples, seq_len, feature_dim).

        snr_db (float): Signal-to-Noise Ratio in decibels (dB).



    Returns:

        torch.Tensor: Data with Gaussian noise applied.

    """
    # Separate the input data to exclude the first channel
    a = data[:, 1:, :]  # Shape: (n_samples, seq_len-1, feature_dim)
    flat_data = a.view(a.size(0), -1)  # Flatten data to calculate power
    signal_power = torch.mean(flat_data**2, dim=1, keepdim=True)  # Shape: (n_samples, 1)
    snr_linear = 10 ** (snr_db / 10)
    noise_power = signal_power / snr_linear
    noise = torch.randn_like(flat_data) * torch.sqrt(noise_power)
    noise = noise.view_as(a)
    noise = torch.cat((torch.zeros_like(data[:, :1, :]), noise), dim=1)  # Add zero noise for the first channel

    return noise
#%%
def plot_coverage(rxs, cov_map, dpi=200, figsize=(6,4), cbar_title=None, title=False,

                  scat_sz=.5, tx_pos=None, tx_ori=None, legend=False, lims=None,

                  proj_3D=False, equal_aspect=False, tight=True, cmap='tab20'):
    
    plt_params = {'cmap': cmap}
    if lims:
        plt_params['vmin'], plt_params['vmax'] = lims[0], lims[1]
    
    n = 3 if proj_3D else 2 # n coordinates to consider 2 = xy | 3 = xyz
    
    xyz = {'x': rxs[:,0], 'y': rxs[:,1]}
    if proj_3D:
        xyz['zs'] = rxs[:,2]
        
    fig, ax = plt.subplots(dpi=dpi, figsize=figsize,
                           subplot_kw={'projection': '3d'} if proj_3D else {})
    
    im = plt.scatter(**xyz, c=cov_map, s=scat_sz, marker='s', **plt_params)

    cbar = plt.colorbar(im, label='' if not cbar_title else cbar_title)
    
    plt.xlabel('x (m)')
    plt.ylabel('y (m)')
    
    # TX position
    if tx_pos is not None:
        ax.scatter(*tx_pos[:n], marker='P', c='r', label='TX')
    
    # TX orientation
    if tx_ori is not None and tx_pos is not None: # ori = [azi, el]
        # positive azimuths point left (like positive angles in a unit circle)    
        # positive elevations point up
        r = 30 # ref size of pointing direction
        tx_lookat = np.copy(tx_pos)
        tx_lookat[:2] += r * np.array([np.cos(tx_ori[2]), np.sin(tx_ori[2])]) # azimuth
        tx_lookat[2] += r * np.sin(tx_ori[1]) # elevation
        
        line_components = [[tx_pos[i], tx_lookat[i]] for i in range(n)]
        line = {key:val for key,val in zip(['xs', 'ys', 'zs'], line_components)}
        if n == 2:
            ax.plot(line_components[0], line_components[1], c='k', alpha=.5, zorder=3)
        else:
            ax.plot(**line, c='k', alpha=.5, zorder=3)
        
    if title:
        ax.set_title(title)
    
    if legend:
        plt.legend(loc='upper center', ncols=10, framealpha=.5)
    
    if tight:
        s = 1
        mins, maxs = np.min(rxs, axis=0)-s, np.max(rxs, axis=0)+s
        if not proj_3D:
            plt.xlim([mins[0], maxs[0]])
            plt.ylim([mins[1], maxs[1]])
        else:
            ax.axes.set_xlim3d([mins[0], maxs[0]])
            ax.axes.set_ylim3d([mins[1], maxs[1]])
            if tx_pos is None:
                ax.axes.set_zlim3d([mins[2], maxs[2]])
            else:
                ax.axes.set_zlim3d([np.min([mins[2], tx_pos[2]]),
                                    np.max([mins[2], tx_pos[2]])])
    
    if equal_aspect and not proj_3D: # disrups the plot
        plt.axis('scaled')
    
    return fig, ax, cbar
#%%
def prepare_loaders(

    preprocessed_data, 

    labels=None, 

    selected_patches_idxs=None, 

    input_type="raw", 

    task_type="classification", 

    feature_selection=False, 

    train_ratio=0.8, 

    batch_size=64, 

    seed=42  # Default seed for reproducibility

):
    """

    Prepares datasets and data loaders for training and validation.



    Args:

        preprocessed_data (torch.Tensor): The input data, either raw or preprocessed.

        labels (torch.Tensor, optional): The labels for classification tasks.

        selected_patches_idxs (torch.Tensor, optional): Indices of selected patches for feature selection.

        input_type (str): "raw" or "processed" to specify input data type.

        task_type (str): "classification" or "regression".

        feature_selection (bool): Whether to perform feature selection based on selected_patches_idxs.

        train_ratio (float): Proportion of data to use for training (remaining for validation).

        batch_size (int): Batch size for data loaders.

        seed (int): Random seed for reproducibility.



    Returns:

        tuple: (train_loader, val_loader)

    """
    # Set random seed for reproducibility
    torch.manual_seed(seed)

    # Prepare samples
    if input_type == "raw":
        if feature_selection and selected_patches_idxs is not None:
            batch_indices = torch.arange(preprocessed_data.size(0)).unsqueeze(1)  # Shape: [batch_size, 1]
            samples = torch.tensor(preprocessed_data[batch_indices, selected_patches_idxs], dtype=torch.float32)
        else:
            samples = torch.tensor(preprocessed_data[:, 1:], dtype=torch.float32)  # raw_chs
    else:
        samples = torch.tensor(preprocessed_data, dtype=torch.float32)

    # Prepare dataset
    if task_type == "classification":
        if labels is None:
            raise ValueError("Labels are required for classification tasks.")
        labels = torch.tensor(labels, dtype=torch.long)
        dataset = TensorDataset(samples, labels)
        target = 0  # REVISE if needed
    elif task_type == "regression":
        target = samples[:, 1:, :].view(samples.size(0), -1)  # Reshape for regression targets
        dataset = TensorDataset(samples, target)
    else:
        raise ValueError("Invalid task_type. Choose 'classification' or 'regression'.")

    # Set random seed for reproducibility
    generator = torch.Generator().manual_seed(seed)

    # Split dataset into training and validation
    n_samples = len(dataset)
    train_size = int(train_ratio * n_samples)
    val_size = n_samples - train_size
    train_dataset, val_dataset = random_split(dataset, [train_size, val_size], generator=generator)

    # Create DataLoaders
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, generator=generator)
    val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)

    print(f"Train size: {len(train_dataset)}, Validation size: {len(val_dataset)}")
    return train_loader, val_loader, samples, target