File size: 10,012 Bytes
8920c6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
from torch.utils.data import DataLoader, Dataset, random_split, TensorDataset
import torch
import numpy as np
#%%
def create_dataloader(grouped_data, batch_size, shuffle):
dataloaders = {}
for seq_length, group in grouped_data.items():
print(f"dataloader in progress ...\nkey: {seq_length}")
## Uncomment the following line if you run out of memory during pre-training
# batch_size = batch_size // 8 if seq_length >= 5 else batch_size
# Unpack samples for the current group
input_ids, masked_tokens, masked_pos = zip(*group)
# Convert to tensors
input_ids_tensor = torch.tensor(input_ids, dtype=torch.float32)
masked_tokens_tensor = torch.tensor(masked_tokens, dtype=torch.float32)
masked_pos_tensor = torch.tensor(masked_pos, dtype=torch.long)
# Create TensorDataset and DataLoader
dataset = TensorDataset(input_ids_tensor, masked_tokens_tensor, masked_pos_tensor)
dataloaders[seq_length] = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, pin_memory=True)
return dataloaders
#%%
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
#%%
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import umap
def visualize_embeddings(embeddings, labels, method="pca", label=None):
"""
Visualize embeddings using PCA, UMAP, or t-SNE with color-coded labels.
Args:
embeddings (torch.Tensor or np.ndarray): Embeddings to visualize, shape (n_samples, n_features).
labels (torch.Tensor or np.ndarray): Class labels corresponding to embeddings, shape (n_samples,).
method (str): Dimensionality reduction method ('pca', 'umap', or 'tsne').
title (str): Title of the plot.
"""
# Convert to numpy if input is a torch.Tensor
if isinstance(embeddings, torch.Tensor):
embeddings = embeddings.cpu().numpy()
if isinstance(labels, torch.Tensor):
labels = labels.cpu().numpy()
# Apply the selected dimensionality reduction method
if method.lower() == "pca":
reducer = PCA(n_components=2)
elif method.lower() == "umap":
reducer = umap.UMAP(n_components=2, n_neighbors=16, random_state=42)
elif method.lower() == "tsne":
reducer = TSNE(n_components=2, random_state=42, init="random")
else:
raise ValueError("Invalid method. Choose from 'pca', 'umap', or 'tsne'.")
reduced_embeddings = reducer.fit_transform(embeddings)
# Create a scatter plot with color-coding based on labels
plt.figure(figsize=(10, 8))
num_classes = len(np.unique(labels))
colors = plt.cm.get_cmap("tab10", num_classes)
for class_idx in range(num_classes):
class_points = reduced_embeddings[labels == class_idx]
plt.scatter(
class_points[:, 0], class_points[:, 1],
label=f"Class {class_idx}",
alpha=0.6
)
# Customize the plot
plt.title(f"{label} ({method.upper()})")
plt.xlabel("Component 1")
plt.ylabel("Component 2")
plt.legend()
plt.show()
#%%
def generate_gaussian_noise(data, snr_db):
"""
Generate Gaussian noise given an SNR and apply it to the data.
Args:
data (torch.Tensor): Input data tensor of shape (n_samples, seq_len, feature_dim).
snr_db (float): Signal-to-Noise Ratio in decibels (dB).
Returns:
torch.Tensor: Data with Gaussian noise applied.
"""
# Separate the input data to exclude the first channel
a = data[:, 1:, :] # Shape: (n_samples, seq_len-1, feature_dim)
flat_data = a.view(a.size(0), -1) # Flatten data to calculate power
signal_power = torch.mean(flat_data**2, dim=1, keepdim=True) # Shape: (n_samples, 1)
snr_linear = 10 ** (snr_db / 10)
noise_power = signal_power / snr_linear
noise = torch.randn_like(flat_data) * torch.sqrt(noise_power)
noise = noise.view_as(a)
noise = torch.cat((torch.zeros_like(data[:, :1, :]), noise), dim=1) # Add zero noise for the first channel
return noise
#%%
def plot_coverage(rxs, cov_map, dpi=200, figsize=(6,4), cbar_title=None, title=False,
scat_sz=.5, tx_pos=None, tx_ori=None, legend=False, lims=None,
proj_3D=False, equal_aspect=False, tight=True, cmap='tab20'):
plt_params = {'cmap': cmap}
if lims:
plt_params['vmin'], plt_params['vmax'] = lims[0], lims[1]
n = 3 if proj_3D else 2 # n coordinates to consider 2 = xy | 3 = xyz
xyz = {'x': rxs[:,0], 'y': rxs[:,1]}
if proj_3D:
xyz['zs'] = rxs[:,2]
fig, ax = plt.subplots(dpi=dpi, figsize=figsize,
subplot_kw={'projection': '3d'} if proj_3D else {})
im = plt.scatter(**xyz, c=cov_map, s=scat_sz, marker='s', **plt_params)
cbar = plt.colorbar(im, label='' if not cbar_title else cbar_title)
plt.xlabel('x (m)')
plt.ylabel('y (m)')
# TX position
if tx_pos is not None:
ax.scatter(*tx_pos[:n], marker='P', c='r', label='TX')
# TX orientation
if tx_ori is not None and tx_pos is not None: # ori = [azi, el]
# positive azimuths point left (like positive angles in a unit circle)
# positive elevations point up
r = 30 # ref size of pointing direction
tx_lookat = np.copy(tx_pos)
tx_lookat[:2] += r * np.array([np.cos(tx_ori[2]), np.sin(tx_ori[2])]) # azimuth
tx_lookat[2] += r * np.sin(tx_ori[1]) # elevation
line_components = [[tx_pos[i], tx_lookat[i]] for i in range(n)]
line = {key:val for key,val in zip(['xs', 'ys', 'zs'], line_components)}
if n == 2:
ax.plot(line_components[0], line_components[1], c='k', alpha=.5, zorder=3)
else:
ax.plot(**line, c='k', alpha=.5, zorder=3)
if title:
ax.set_title(title)
if legend:
plt.legend(loc='upper center', ncols=10, framealpha=.5)
if tight:
s = 1
mins, maxs = np.min(rxs, axis=0)-s, np.max(rxs, axis=0)+s
if not proj_3D:
plt.xlim([mins[0], maxs[0]])
plt.ylim([mins[1], maxs[1]])
else:
ax.axes.set_xlim3d([mins[0], maxs[0]])
ax.axes.set_ylim3d([mins[1], maxs[1]])
if tx_pos is None:
ax.axes.set_zlim3d([mins[2], maxs[2]])
else:
ax.axes.set_zlim3d([np.min([mins[2], tx_pos[2]]),
np.max([mins[2], tx_pos[2]])])
if equal_aspect and not proj_3D: # disrups the plot
plt.axis('scaled')
return fig, ax, cbar
#%%
def prepare_loaders(
preprocessed_data,
labels=None,
selected_patches_idxs=None,
input_type="raw",
task_type="classification",
feature_selection=False,
train_ratio=0.8,
batch_size=64,
seed=42 # Default seed for reproducibility
):
"""
Prepares datasets and data loaders for training and validation.
Args:
preprocessed_data (torch.Tensor): The input data, either raw or preprocessed.
labels (torch.Tensor, optional): The labels for classification tasks.
selected_patches_idxs (torch.Tensor, optional): Indices of selected patches for feature selection.
input_type (str): "raw" or "processed" to specify input data type.
task_type (str): "classification" or "regression".
feature_selection (bool): Whether to perform feature selection based on selected_patches_idxs.
train_ratio (float): Proportion of data to use for training (remaining for validation).
batch_size (int): Batch size for data loaders.
seed (int): Random seed for reproducibility.
Returns:
tuple: (train_loader, val_loader)
"""
# Set random seed for reproducibility
torch.manual_seed(seed)
# Prepare samples
if input_type == "raw":
if feature_selection and selected_patches_idxs is not None:
batch_indices = torch.arange(preprocessed_data.size(0)).unsqueeze(1) # Shape: [batch_size, 1]
samples = torch.tensor(preprocessed_data[batch_indices, selected_patches_idxs], dtype=torch.float32)
else:
samples = torch.tensor(preprocessed_data[:, 1:], dtype=torch.float32) # raw_chs
else:
samples = torch.tensor(preprocessed_data, dtype=torch.float32)
# Prepare dataset
if task_type == "classification":
if labels is None:
raise ValueError("Labels are required for classification tasks.")
labels = torch.tensor(labels, dtype=torch.long)
dataset = TensorDataset(samples, labels)
target = 0 # REVISE if needed
elif task_type == "regression":
target = samples[:, 1:, :].view(samples.size(0), -1) # Reshape for regression targets
dataset = TensorDataset(samples, target)
else:
raise ValueError("Invalid task_type. Choose 'classification' or 'regression'.")
# Set random seed for reproducibility
generator = torch.Generator().manual_seed(seed)
# Split dataset into training and validation
n_samples = len(dataset)
train_size = int(train_ratio * n_samples)
val_size = n_samples - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size], generator=generator)
# Create DataLoaders
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, generator=generator)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
print(f"Train size: {len(train_dataset)}, Validation size: {len(val_dataset)}")
return train_loader, val_loader, samples, target |