--- license: apache-2.0 pipeline_tag: feature-extraction library_name: transformers --- # Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders This model is presented in the paper [Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders](https://huggingface.co/papers/2404.06912). It's a cross-encoder architecture designed for efficient and permutation-invariant passage re-ranking. Code: https://github.com/webis-de/set-encoder We provide the following pre-trained models: | Model Name | TREC DL 19 (BM25) | TREC DL 20 (BM25) | TREC DL 19 (ColBERTv2) | TREC DL 20 (ColBERTv2) | | ------------------------------------------------------------------- | ----------------- | ----------------- | ---------------------- | ---------------------- | | [set-encoder-base](https://huggingface.co/webis/set-encoder-base) | 0.724 | 0.710 | 0.788 | 0.777 | | [set-encoder-large](https://huggingface.co/webis/set-encoder-large) | 0.727 | 0.735 | 0.789 | 0.790 | ## Inference We recommend using the `lightning-ir` cli to run inference. The following command can be used to run inference using the `set-encoder-base` model on the TREC DL 19 and TREC DL 20 datasets: ```bash lightning-ir re_rank --config configs/re-rank.yaml --config configs/set-encoder-finetuned.yaml --config configs/trec-dl.yaml ``` ## Fine-Tuning WIP