wdndev commited on
Commit
27aa048
·
1 Parent(s): 6522c72
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "TinyllmForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_tinyllm.TinyllmConfig",
7
+ "AutoModelForCausalLM": "modeling_tinyllm.TinyllmForCausalLM"
8
+ },
9
+ "attention_dropout": 0.0,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 512,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1408,
14
+ "max_position_embeddings": 1024,
15
+ "model_type": "tinyllm",
16
+ "num_attention_heads": 8,
17
+ "num_hidden_layers": 8,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_theta": 10000.0,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "float16",
23
+ "transformers_version": "4.38.2",
24
+ "use_cache": true,
25
+ "vocab_size": 64798
26
+ }
configuration_tinyllm.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+
5
+ logger = logging.get_logger(__name__)
6
+
7
+
8
+ class TinyllmConfig(PretrainedConfig):
9
+ """ TinyLLM 配置文件
10
+ """
11
+
12
+ model_type = "tinyllm"
13
+ keys_to_ignore_at_inference = ["past_key_values"]
14
+
15
+ def __init__(
16
+ self,
17
+ vocab_size=64797,
18
+ hidden_size=4096,
19
+ intermediate_size=11008,
20
+ num_hidden_layers=32,
21
+ num_attention_heads=32,
22
+ num_key_value_heads=None,
23
+ hidden_act="silu",
24
+ max_position_embeddings=2048,
25
+ initializer_range=0.02,
26
+ rms_norm_eps=1e-6,
27
+ use_cache=True,
28
+ pad_token_id=None,
29
+ bos_token_id=None,
30
+ eos_token_id=None,
31
+ tie_word_embeddings=False,
32
+ rope_theta=10000.0,
33
+ attention_dropout=0.0,
34
+ **kwargs
35
+ ):
36
+ self.vocab_size = vocab_size
37
+ self.max_position_embeddings = max_position_embeddings
38
+ self.hidden_size = hidden_size
39
+ self.intermediate_size = intermediate_size
40
+ self.num_hidden_layers = num_hidden_layers
41
+ self.num_attention_heads = num_attention_heads
42
+
43
+ # for backward compatibility
44
+ if num_key_value_heads is None:
45
+ num_key_value_heads = num_attention_heads
46
+
47
+ self.num_key_value_heads = num_key_value_heads
48
+ self.hidden_act = hidden_act
49
+ self.initializer_range = initializer_range
50
+ self.rms_norm_eps = rms_norm_eps
51
+ self.use_cache = use_cache
52
+ self.rope_theta = rope_theta
53
+ self.attention_dropout = attention_dropout
54
+
55
+ super().__init__(
56
+ pad_token_id=pad_token_id,
57
+ bos_token_id=bos_token_id,
58
+ eos_token_id=eos_token_id,
59
+ tie_word_embeddings=tie_word_embeddings,
60
+ **kwargs
61
+ )
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "top_k":30,
7
+ "top_p":0.8,
8
+ "temperature":0.8,
9
+ "repetition_penalty": 1.1,
10
+ "_from_model_config": true,
11
+ "transformers_version": "4.38.2"
12
+ }
modeling_tinyllm.py ADDED
@@ -0,0 +1,1057 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tiny LLM 模型架构
3
+
4
+ 到处抄,整体还是Llama2的模型架构
5
+ """
6
+
7
+ import math
8
+ import warnings
9
+ from threading import Thread
10
+ from typing import List, Optional, Tuple, Union
11
+
12
+ import torch
13
+ import torch.nn.functional as F
14
+ import torch.utils.checkpoint
15
+ from torch import nn
16
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
17
+
18
+ from transformers.activations import ACT2FN
19
+ from transformers.cache_utils import Cache, DynamicCache
20
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
21
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
22
+ from transformers.modeling_utils import PreTrainedModel
23
+ from transformers.utils import logging
24
+ from transformers.generation.utils import GenerationConfig
25
+
26
+ from .configuration_tinyllm import TinyllmConfig
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ def debug(key, value):
31
+ """
32
+ """
33
+ try:
34
+ res = {"var": torch.var(value).item(), "mean": torch.mean(value).item(),
35
+ "max":torch.max(value).item(), "size": value.size(), "dtype": value.dtype}
36
+ except:
37
+ res = value
38
+ print("debug", key, res, sep="\t")
39
+
40
+
41
+ def report_memory(name):
42
+ """Simple GPU memory report."""
43
+ mega_bytes = 1024.0 * 1024.0
44
+ string = name + ' memory (MB)'
45
+ # 变量分配显存
46
+ string += ' | allocated: {}'.format(
47
+ torch.cuda.memory_allocated() / mega_bytes)
48
+ string += ' | max allocated: {}'.format(
49
+ torch.cuda.max_memory_allocated() / mega_bytes)
50
+ # 缓存和变量分配显存,实际显存还需要+pytorch context
51
+ string += ' | reserved: {}'.format(
52
+ torch.cuda.memory_reserved() / mega_bytes)
53
+ string += ' | max reserved: {}'.format(
54
+ torch.cuda.max_memory_reserved() / mega_bytes)
55
+ try:
56
+ if torch.distributed.get_rank() == 0:
57
+ print("[Rank {}] {}".format(torch.distributed.get_rank(), string),
58
+ flush=True)
59
+ pass
60
+ except:
61
+ pass
62
+
63
+ class TinyllmRMSNorm(nn.Module):
64
+ def __init__(self, hidden_size, eps=1e-6):
65
+ """ TinyllmRMSNorm
66
+ """
67
+ super().__init__()
68
+ self.weight = nn.Parameter(torch.ones(hidden_size))
69
+ self.variance_epsilon = eps
70
+
71
+ def forward(self, hidden_states):
72
+ input_dtype = hidden_states.dtype
73
+ hidden_states = hidden_states.to(torch.float32)
74
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
75
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
76
+ return self.weight * hidden_states.to(input_dtype)
77
+
78
+ class TinyllmRotaryEmbedding(nn.Module):
79
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
80
+ """ 旋转位置编码
81
+ - dim (int): 旋转嵌入的维度大小。
82
+ - max_position_embeddings (int): 预计算的最大位置嵌入数,默认为2048。
83
+ - base (int): 用于计算逆频率的基本频率,默认为10000。
84
+ """
85
+ super().__init__()
86
+
87
+ self.dim = dim
88
+ self.max_position_embeddings = max_position_embeddings
89
+ self.base = base
90
+ # 计算逆频率值,并将其注册为模型的缓冲区
91
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
92
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
93
+
94
+ # 为了支持`torch.jit.trace`功能,立即计算预存储的余弦和正弦缓存
95
+ self._set_cos_sin_cache(
96
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
97
+ )
98
+
99
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
100
+ """ 预计算的余弦和正弦缓存
101
+ """
102
+ self.max_seq_len_cached = seq_len
103
+ # 创建一个从0到最大序列长度-1的整数张量,与 inv_freq 具有相同的设备和数据类型
104
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
105
+
106
+ # 计算每个位置与每个维度的频率,形成频谱矩阵
107
+ freqs = torch.outer(t, self.inv_freq)
108
+
109
+ # 不同于论文中的实现,这里采用了不同的排列方式以获得相同的计算结果
110
+ emb = torch.cat((freqs, freqs), dim=-1)
111
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
112
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
113
+
114
+ def forward(self, x, seq_len=None):
115
+ # x: [bs, num_attention_heads, seq_len, head_size]
116
+ if seq_len > self.max_seq_len_cached:
117
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
118
+
119
+ return (
120
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
121
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
122
+ )
123
+
124
+ def rotate_half(x):
125
+ """ 旋转输入一半的 hidden dim
126
+ """
127
+ x1 = x[..., : x.shape[-1] // 2]
128
+ x2 = x[..., x.shape[-1] // 2 :]
129
+ return torch.cat((-x2, x1), dim=-1)
130
+
131
+
132
+ # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
133
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
134
+ """ 在 qk 应用旋转位置编码
135
+
136
+ Args:
137
+ q (`torch.Tensor`): q
138
+ k (`torch.Tensor`): k
139
+ cos (`torch.Tensor`): 旋转位置嵌入的余弦部分
140
+ sin (`torch.Tensor`): 旋转位置嵌入的正弦部分
141
+ position_ids (`torch.Tensor`): 与q和k对应位置的标记索引。例如,在处理KV缓存时,可以使用偏移过的位置ID。
142
+ unsqueeze_dim (`int`, *optional*, defaults to 1): 'unsqueeze_dim' 参数指定了沿哪个维度对 cos[position_ids]
143
+ 和 sin[position_ids] 进行扩展,以便它们能够适当地广播到 q 和 k 的维度上。
144
+ 例如,注意 cos[position_ids] 和 sin[position_ids] 具有形状 [batch_size, seq_len, head_dim]。
145
+ 那么,如果 q 和 k 的形状分别为 [batch_size, heads, seq_len, head_dim],
146
+ 则设置 unsqueeze_dim=1 可使 cos[position_ids] 和 sin[position_ids] 可以广播到 q 和 k 的形状上。
147
+ 同样地,如果 q 和 k 的形状为 [batch_size, seq_len, heads, head_dim],则应将 unsqueeze_dim 设置为 2
148
+ Returns:
149
+ 包含使用旋转位置嵌入变换后的q和k张量的 `tuple(torch.Tensor)`。
150
+ """
151
+ # print("ori cos: ", cos.shape)
152
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
153
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
154
+
155
+ # print("q: ", q.shape)
156
+ # print("cos: ", cos.shape)
157
+ # print("sin: ", sin.shape)
158
+ # print("rotate_half: ", rotate_half(q).shape)
159
+ q_embed = (q * cos) + (rotate_half(q) * sin)
160
+ k_embed = (k * cos) + (rotate_half(k) * sin)
161
+ return q_embed, k_embed
162
+
163
+
164
+ class TinyllmMLP(nn.Module):
165
+ def __init__(self, config):
166
+ super().__init__()
167
+ self.config = config
168
+ self.hidden_size = config.hidden_size
169
+ self.intermediate_size = config.intermediate_size
170
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
171
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
172
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
173
+ self.act_fn = ACT2FN[config.hidden_act]
174
+
175
+ def forward(self, x):
176
+ intermediate = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
177
+ down_proj = self.down_proj(intermediate)
178
+ return down_proj
179
+
180
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
181
+ """
182
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
183
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
184
+ """
185
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
186
+ if n_rep == 1:
187
+ return hidden_states
188
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
189
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
190
+
191
+ class TinyllmAttention(nn.Module):
192
+ """ 多头注意力
193
+ """
194
+
195
+ def __init__(self, config: TinyllmConfig, layer_idx: Optional[int] = None):
196
+ super().__init__()
197
+ self.config = config
198
+ self.layer_idx = layer_idx
199
+ if layer_idx is None:
200
+ logger.warning_once(
201
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
202
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
203
+ "when creating this class."
204
+ )
205
+
206
+ self.hidden_size = config.hidden_size
207
+ self.num_heads = config.num_attention_heads
208
+ self.head_dim = self.hidden_size // self.num_heads
209
+ self.num_key_value_heads = config.num_key_value_heads
210
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
211
+ self.max_position_embeddings = config.max_position_embeddings
212
+ self.rope_theta = config.rope_theta
213
+ # 因果自回归模式
214
+ self.is_causal = True
215
+ self.attention_dropout = config.attention_dropout
216
+
217
+ if (self.head_dim * self.num_heads) != self.hidden_size:
218
+ raise ValueError(
219
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
220
+ f" and `num_heads`: {self.num_heads})."
221
+ )
222
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
223
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
224
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
225
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
226
+
227
+ self.rotary_emb = TinyllmRotaryEmbedding(
228
+ self.head_dim,
229
+ max_position_embeddings=self.max_position_embeddings,
230
+ base=self.rope_theta,
231
+ )
232
+
233
+ def forward(
234
+ self,
235
+ hidden_states: torch.Tensor,
236
+ attention_mask: Optional[torch.Tensor] = None,
237
+ position_ids: Optional[torch.LongTensor] = None,
238
+ past_key_value: Optional[Cache] = None,
239
+ output_attentions: bool = False,
240
+ use_cache: bool = False,
241
+ **kwargs,
242
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
243
+ if "padding_mask" in kwargs:
244
+ warnings.warn(
245
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
246
+ )
247
+ bsz, q_len, _ = hidden_states.size()
248
+
249
+ query_states = self.q_proj(hidden_states)
250
+ key_states = self.k_proj(hidden_states)
251
+ value_states = self.v_proj(hidden_states)
252
+
253
+ # 重新投影,变成多头注意力结构
254
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
255
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
256
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
257
+
258
+ kv_seq_len = key_states.shape[-2]
259
+ if past_key_value is not None:
260
+ if self.layer_idx is None:
261
+ raise ValueError(
262
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
263
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
264
+ "with a layer index."
265
+ )
266
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
267
+ # 应用旋转位置编码到 qk 向量
268
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
269
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
270
+
271
+ # 如果存在缓存,则更新 kv
272
+ if past_key_value is not None:
273
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
274
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
275
+
276
+ # repeat k/v heads if n_kv_heads < n_heads
277
+ # 如果 num_key_value_heads 小于 num_heads,则重复key和value向量以匹配头数量
278
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
279
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
280
+
281
+ # 计算注意力权重
282
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
283
+
284
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
285
+ raise ValueError(
286
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
287
+ f" {attn_weights.size()}"
288
+ )
289
+
290
+ if attention_mask is not None:
291
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
292
+ raise ValueError(
293
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
294
+ )
295
+
296
+ attn_weights = attn_weights + attention_mask
297
+
298
+ # softmax归一化注意力权重,并转换至float32类型以防止数值溢出
299
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
300
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
301
+ # 注意力输出
302
+ attn_output = torch.matmul(attn_weights, value_states)
303
+
304
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
305
+ raise ValueError(
306
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
307
+ f" {attn_output.size()}"
308
+ )
309
+
310
+ # 还原注意力输出的形状以与后续层对接
311
+ attn_output = attn_output.transpose(1, 2).contiguous()
312
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
313
+
314
+ # 通过o_proj层进一步处理注意力输出
315
+ attn_output = self.o_proj(attn_output)
316
+
317
+ if not output_attentions:
318
+ attn_weights = None
319
+
320
+ return attn_output, attn_weights, past_key_value
321
+
322
+ class TinyllmSdpaAttention(TinyllmAttention):
323
+ """ 使用 torch.nn.functional.scaled_dot_product_attention 实现的注意力模块。
324
+ 该模块继承自 `TinyllmAttention`,因为模块的权重保持不变。唯一的变化在于前向传播过程中适应 SDPA API。
325
+ Scaled Dot Product Attention (SDPA)
326
+ """
327
+
328
+ def forward(
329
+ self,
330
+ hidden_states: torch.Tensor,
331
+ attention_mask: Optional[torch.Tensor] = None,
332
+ position_ids: Optional[torch.LongTensor] = None,
333
+ past_key_value: Optional[Cache] = None,
334
+ output_attentions: bool = False,
335
+ use_cache: bool = False,
336
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
337
+ # 当设置output_attentions=True时,由于torch.nn.functional.scaled_dot_product_attention不支持直接返回注意力权重
338
+ # 因此暂时降级回用父类的手动实现方式,并发出警告提示用户未来版本的更改要求
339
+ if output_attentions:
340
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
341
+ logger.warning_once(
342
+ "Model is using SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
343
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
344
+ )
345
+ return super().forward(
346
+ hidden_states=hidden_states,
347
+ attention_mask=attention_mask,
348
+ position_ids=position_ids,
349
+ past_key_value=past_key_value,
350
+ output_attentions=output_attentions,
351
+ use_cache=use_cache,
352
+ )
353
+ # 获取输入维度信息
354
+ bsz, q_len, _ = hidden_states.size()
355
+
356
+ # 对输入进行线性映射得到query、key、value向量
357
+ query_states = self.q_proj(hidden_states)
358
+ key_states = self.k_proj(hidden_states)
359
+ value_states = self.v_proj(hidden_states)
360
+
361
+ # 将映射后的向量调整为多头注意力所需格式
362
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
363
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
364
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
365
+
366
+ # 计算有效的 kv 序列长度(考虑缓存的情况)
367
+ kv_seq_len = key_states.shape[-2]
368
+ if past_key_value is not None:
369
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
370
+
371
+ # 应用旋转位置嵌入(RoPE)
372
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
373
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
374
+
375
+ # 如果有缓存,更新key和value状态
376
+ if past_key_value is not None:
377
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
378
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
379
+
380
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
381
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
382
+
383
+ if attention_mask is not None:
384
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
385
+ raise ValueError(
386
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
387
+ )
388
+
389
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
390
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
391
+ if query_states.device.type == "cuda" and attention_mask is not None:
392
+ query_states = query_states.contiguous()
393
+ key_states = key_states.contiguous()
394
+ value_states = value_states.contiguous()
395
+
396
+ # 使用scaled_dot_product_attention进行计算
397
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
398
+ query_states,
399
+ key_states,
400
+ value_states,
401
+ attn_mask=attention_mask,
402
+ dropout_p=self.attention_dropout if self.training else 0.0,
403
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
404
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
405
+ )
406
+
407
+ # 还原注意力输出的形状
408
+ attn_output = attn_output.transpose(1, 2).contiguous()
409
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
410
+
411
+ # 将注意力输出通过最终的线性层(o_proj层)
412
+ attn_output = self.o_proj(attn_output)
413
+
414
+ return attn_output, None, past_key_value
415
+
416
+ TINYLLM_ATTENTION_CLASSES = {
417
+ "eager": TinyllmAttention,
418
+ "sdpa": TinyllmSdpaAttention,
419
+ }
420
+
421
+ class TinyllmDecoderLayer(nn.Module):
422
+ def __init__(self, config: TinyllmConfig, layer_idx: int):
423
+ super().__init__()
424
+ self.hidden_size = config.hidden_size
425
+
426
+ self.self_attn = TINYLLM_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
427
+ self.mlp = TinyllmMLP(config)
428
+ self.input_layernorm = TinyllmRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
429
+ self.post_attention_layernorm = TinyllmRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
430
+
431
+ def forward(
432
+ self,
433
+ hidden_states: torch.Tensor,
434
+ attention_mask: Optional[torch.Tensor] = None,
435
+ position_ids: Optional[torch.LongTensor] = None,
436
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
437
+ output_attentions: Optional[bool] = False,
438
+ use_cache: Optional[bool] = False,
439
+ **kwargs,
440
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
441
+ """
442
+ Args:
443
+ hidden_states (`torch.FloatTensor`): 输入形状 `(batch, seq_len, embed_dim)`
444
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask 形状`(batch, sequence_length)`,
445
+ 填充使用0表示
446
+ output_attentions (`bool`, *optional*): 是否返回所有注意力层的注意力张量。
447
+ use_cache (`bool`, *optional*): 如果设置为 `True`,则返回 `past_key_values` 关键值状态,可用于加速解码
448
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): 缓存的之前kv状态
449
+ """
450
+
451
+ residual = hidden_states
452
+
453
+ hidden_states = self.input_layernorm(hidden_states)
454
+
455
+ # Self Attention
456
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
457
+ hidden_states=hidden_states,
458
+ attention_mask=attention_mask,
459
+ position_ids=position_ids,
460
+ past_key_value=past_key_value,
461
+ output_attentions=output_attentions,
462
+ use_cache=use_cache,
463
+ )
464
+ hidden_states = residual + hidden_states
465
+
466
+ # Fully Connected
467
+ residual = hidden_states
468
+ hidden_states = self.post_attention_layernorm(hidden_states)
469
+ hidden_states = self.mlp(hidden_states)
470
+ hidden_states = residual + hidden_states
471
+
472
+ outputs = (hidden_states,)
473
+
474
+ if output_attentions:
475
+ outputs += (self_attn_weights,)
476
+
477
+ if use_cache:
478
+ outputs += (present_key_value,)
479
+
480
+ return outputs
481
+
482
+
483
+ class TinyllmPreTrainedModel(PreTrainedModel):
484
+ config_class = TinyllmConfig
485
+ # 定义了模型内部子模块命名的基础前缀,当加载或保存模型时,这个前缀将用于识别模型主体部分。
486
+ base_model_prefix = "model"
487
+ # 表明该模型支持梯度检查点技术,这是一种内存优化策略,可减少模型训练时所需的显存
488
+ supports_gradient_checkpointing = True
489
+ # 指定了在序列化过程中不应被拆分的模块列表,即在模型保存与加载时保持这些模块作为一个整体。
490
+ _no_split_modules = ["TinyllmDecoderLayer"]
491
+ # 在跨设备数据移动时,指示哪些关键字(key)对应的数据应该跳过设备放置步骤。
492
+ _skip_keys_device_placement = "past_key_values"
493
+ # Scaled Dot Product Attention (SDPA)
494
+ _supports_sdpa = True
495
+ # 表示模型支持缓存机制,这在自回归模型(如Transformer解码器)中很常见,
496
+ # 用于存储先前计算的结果以加快后续时间步长的计算速度。
497
+ _supports_cache_class = True
498
+
499
+ def _init_weights(self, module):
500
+ std = self.config.initializer_range
501
+ if isinstance(module, nn.Linear):
502
+ module.weight.data.normal_(mean=0.0, std=std)
503
+ if module.bias is not None:
504
+ module.bias.data.zero_()
505
+ elif isinstance(module, nn.Embedding):
506
+ module.weight.data.normal_(mean=0.0, std=std)
507
+ if module.padding_idx is not None:
508
+ module.weight.data[module.padding_idx].zero_()
509
+
510
+ class TinyllmModel(TinyllmPreTrainedModel):
511
+ """ 根据配置文件堆叠 TinyllmDecoderLayer
512
+ Args:
513
+ config: TinyllmConfig
514
+ """
515
+
516
+ def __init__(self, config: TinyllmConfig):
517
+ super().__init__(config)
518
+ self.padding_idx = config.pad_token_id
519
+ self.vocab_size = config.vocab_size
520
+
521
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
522
+ self.layers = nn.ModuleList(
523
+ [TinyllmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
524
+ )
525
+ self._attn_implementation = config._attn_implementation
526
+ self.norm = TinyllmRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
527
+
528
+ self.gradient_checkpointing = False
529
+ # Initialize weights and apply final processing
530
+ self.post_init()
531
+
532
+ def get_input_embeddings(self):
533
+ return self.embed_tokens
534
+
535
+ def set_input_embeddings(self, value):
536
+ self.embed_tokens = value
537
+
538
+ def forward(
539
+ self,
540
+ input_ids: torch.LongTensor = None,
541
+ attention_mask: Optional[torch.Tensor] = None,
542
+ position_ids: Optional[torch.LongTensor] = None, # 每个输入序列词元在位置嵌入中的位置索引
543
+ past_key_values: Optional[List[torch.FloatTensor]] = None, # 可用于加速序列解码预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值)
544
+ inputs_embeds: Optional[torch.FloatTensor] = None,
545
+ use_cache: Optional[bool] = None,
546
+ output_attentions: Optional[bool] = None,
547
+ output_hidden_states: Optional[bool] = None,
548
+ return_dict: Optional[bool] = None,
549
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
550
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
551
+ output_hidden_states = (
552
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
553
+ )
554
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
555
+
556
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
557
+
558
+ # retrieve input_ids and inputs_embeds
559
+ if input_ids is not None and inputs_embeds is not None:
560
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
561
+ elif input_ids is not None:
562
+ batch_size, seq_length = input_ids.shape
563
+ elif inputs_embeds is not None:
564
+ batch_size, seq_length, _ = inputs_embeds.shape
565
+ else:
566
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
567
+
568
+ if self.gradient_checkpointing and self.training:
569
+ if use_cache:
570
+ logger.warning_once(
571
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
572
+ )
573
+ use_cache = False
574
+
575
+ past_key_values_length = 0
576
+
577
+ if use_cache:
578
+ use_legacy_cache = not isinstance(past_key_values, Cache)
579
+ if use_legacy_cache:
580
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
581
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
582
+
583
+ if position_ids is None:
584
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
585
+ # 生成一个从past_key_values_length到seq_length + past_key_values_length的整数序列
586
+ position_ids = torch.arange(
587
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
588
+ )
589
+ # 将生成的序列重塑为形状为(1, seq_length)的张量,然后展平为形状为(-1, seq_length)的张量
590
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
591
+ else:
592
+ position_ids = position_ids.view(-1, seq_length).long()
593
+
594
+ if inputs_embeds is None:
595
+ inputs_embeds = self.embed_tokens(input_ids)
596
+
597
+ # 适应不同注意力机制对注意力掩码的不同要求而设计的
598
+ if self._attn_implementation == "sdpa" and not output_attentions:
599
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
600
+ # the manual implementation that requires a 4D causal mask in all cases.
601
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
602
+ attention_mask,
603
+ (batch_size, seq_length),
604
+ inputs_embeds,
605
+ past_key_values_length,
606
+ )
607
+ else:
608
+ # 4d mask is passed through the layers
609
+ attention_mask = _prepare_4d_causal_attention_mask(
610
+ attention_mask,
611
+ (batch_size, seq_length),
612
+ inputs_embeds,
613
+ past_key_values_length,
614
+ sliding_window=self.config.sliding_window,
615
+ )
616
+
617
+ hidden_states = inputs_embeds
618
+
619
+ # decoder layers
620
+ all_hidden_states = () if output_hidden_states else None
621
+ all_self_attns = () if output_attentions else None
622
+ next_decoder_cache = None
623
+
624
+ for decoder_layer in self.layers:
625
+ # 1.隐藏状态保存
626
+ if output_hidden_states:
627
+ all_hidden_states += (hidden_states,)
628
+ # 2.梯度检查,方便在反向传播时只激活部分层,节省内存资源
629
+ # 3.解码层:
630
+ if self.gradient_checkpointing and self.training:
631
+ layer_outputs = self._gradient_checkpointing_func(
632
+ decoder_layer.__call__,
633
+ hidden_states,
634
+ attention_mask,
635
+ position_ids,
636
+ past_key_values,
637
+ output_attentions,
638
+ use_cache,
639
+ )
640
+ else:
641
+ layer_outputs = decoder_layer(
642
+ hidden_states,
643
+ attention_mask=attention_mask,
644
+ position_ids=position_ids,
645
+ past_key_value=past_key_values,
646
+ output_attentions=output_attentions,
647
+ use_cache=use_cache,
648
+ )
649
+ # 4.更新隐藏状态
650
+ hidden_states = layer_outputs[0]
651
+ # 5.更新缓存
652
+ if use_cache:
653
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
654
+ # 6.注意力输出保存
655
+ if output_attentions:
656
+ all_self_attns += (layer_outputs[1],)
657
+
658
+ hidden_states = self.norm(hidden_states)
659
+
660
+ # add hidden states from the last decoder layer
661
+ if output_hidden_states:
662
+ all_hidden_states += (hidden_states,)
663
+
664
+ next_cache = None
665
+ if use_cache:
666
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
667
+
668
+ if not return_dict:
669
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
670
+ return BaseModelOutputWithPast(
671
+ last_hidden_state=hidden_states,
672
+ past_key_values=next_cache,
673
+ hidden_states=all_hidden_states,
674
+ attentions=all_self_attns,
675
+ )
676
+
677
+ class TinyllmForCausalLM(TinyllmPreTrainedModel):
678
+ _tied_weights_keys = ["lm_head.weight"]
679
+
680
+ def __init__(self, config):
681
+ super().__init__(config)
682
+ self.model = TinyllmModel(config)
683
+ self.vocab_size = config.vocab_size
684
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
685
+
686
+ # Initialize weights and apply final processing
687
+ self.post_init()
688
+
689
+ def get_input_embeddings(self):
690
+ return self.model.embed_tokens
691
+
692
+ def set_input_embeddings(self, value):
693
+ self.model.embed_tokens = value
694
+
695
+ def get_output_embeddings(self):
696
+ return self.lm_head
697
+
698
+ def set_output_embeddings(self, new_embeddings):
699
+ self.lm_head = new_embeddings
700
+
701
+ def set_decoder(self, decoder):
702
+ self.model = decoder
703
+
704
+ def get_decoder(self):
705
+ return self.model
706
+
707
+ def forward(
708
+ self,
709
+ input_ids: torch.LongTensor = None,
710
+ attention_mask: Optional[torch.Tensor] = None,
711
+ position_ids: Optional[torch.LongTensor] = None,
712
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
713
+ inputs_embeds: Optional[torch.FloatTensor] = None,
714
+ labels: Optional[torch.LongTensor] = None,
715
+ use_cache: Optional[bool] = None,
716
+ output_attentions: Optional[bool] = None,
717
+ output_hidden_states: Optional[bool] = None,
718
+ return_dict: Optional[bool] = None,
719
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
720
+
721
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
722
+ output_hidden_states = (
723
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
724
+ )
725
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
726
+
727
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
728
+ outputs = self.model(
729
+ input_ids=input_ids,
730
+ attention_mask=attention_mask,
731
+ position_ids=position_ids,
732
+ past_key_values=past_key_values,
733
+ inputs_embeds=inputs_embeds,
734
+ use_cache=use_cache,
735
+ output_attentions=output_attentions,
736
+ output_hidden_states=output_hidden_states,
737
+ return_dict=return_dict,
738
+ )
739
+
740
+ hidden_states = outputs[0]
741
+ logits = self.lm_head(hidden_states)
742
+ logits = logits.float()
743
+
744
+ loss = None
745
+ if labels is not None:
746
+ # Shift so that tokens < n predict n
747
+ # 对于自回归模型(如GPT系列),我们需要将模型输出的logits向前移动一位,
748
+ # 这样使得模型预测的是当前时刻 t 的下一个词,而非当前词本身
749
+ shift_logits = logits[..., :-1, :].contiguous()
750
+ # 同时,也需要将真实标签(labels)向前移动一位以与调整后的logits对齐
751
+ shift_labels = labels[..., 1:].contiguous()
752
+ # Flatten the tokens
753
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
754
+
755
+ # 将移位后的 logits 和 labels 扁平化,即将它们展平为一维张量
756
+ # 其中shift_logits变成 (batch_size * sequence_length, vocab_size) 的形式
757
+ # shift_labels变为 (batch_size * sequence_length) 的形式
758
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
759
+ shift_labels = shift_labels.view(-1)
760
+
761
+ # Enable model parallelism
762
+ # 确保模型并行计算时,labels的数据存储位置与logits一致
763
+ shift_labels = shift_labels.to(shift_logits.device)
764
+ loss = loss_fct(shift_logits, shift_labels)
765
+
766
+ if not return_dict:
767
+ output = (logits,) + outputs[1:]
768
+ return (loss,) + output if loss is not None else output
769
+
770
+ return CausalLMOutputWithPast(
771
+ loss=loss,
772
+ logits=logits,
773
+ past_key_values=outputs.past_key_values,
774
+ hidden_states=outputs.hidden_states,
775
+ attentions=outputs.attentions,
776
+ )
777
+
778
+ def prepare_inputs_for_generation(
779
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
780
+ ):
781
+ """ 准备模型的输入参数
782
+ 包括处理input_ids、past_key_values(历史隐藏状态缓存)、attention_mask以及可选的inputs_embeds。
783
+ """
784
+ # Omit tokens covered by past_key_values
785
+ if past_key_values is not None:
786
+ if isinstance(past_key_values, Cache):
787
+ cache_length = past_key_values.get_seq_length()
788
+ past_length = past_key_values.seen_tokens
789
+ max_cache_length = past_key_values.get_max_length()
790
+ else:
791
+ cache_length = past_length = past_key_values[0][0].shape[2]
792
+ max_cache_length = None
793
+
794
+ # 根据缓存情况裁剪input_ids,只保留未处理的token:
795
+ # # 1. 如果 attention_mask 比 input_ids 更长,说明部分输入已通过缓存传递(如仅传入inputs_embeds)
796
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
797
+ # 取最后未处理的部分
798
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
799
+ # 2. 若已处理的 token 数小于input_ids中的总数,表明input_ids包含全部输入,从中去掉已处理的部分
800
+ elif past_length < input_ids.shape[1]:
801
+ input_ids = input_ids[:, past_length:]
802
+ # 3. 否则,认为input_ids中只有待处理的新token
803
+
804
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
805
+ if (
806
+ max_cache_length is not None
807
+ and attention_mask is not None
808
+ and cache_length + input_ids.shape[1] > max_cache_length
809
+ ):
810
+ attention_mask = attention_mask[:, -max_cache_length:]
811
+
812
+ # 初始化或处理position_ids
813
+ position_ids = kwargs.get("position_ids", None)
814
+ # 如果attention_mask存在但position_ids不存在,则基于attention_mask动态创建position_ids
815
+ if attention_mask is not None and position_ids is None:
816
+ # create position_ids on the fly for batch generation
817
+ position_ids = attention_mask.long().cumsum(-1) - 1
818
+ position_ids.masked_fill_(attention_mask == 0, 1)
819
+ if past_key_values:
820
+ position_ids = position_ids[:, -input_ids.shape[1] :]
821
+
822
+ # 根据inputs_embeds和past_key_values的存在与否来决定模型输入
823
+ # 如果提供了inputs_embeds且没有past_key_values(首次生成步骤),则直接使用inputs_embeds作为模型输入
824
+ if inputs_embeds is not None and past_key_values is None:
825
+ model_inputs = {"inputs_embeds": inputs_embeds}
826
+ else:
827
+ model_inputs = {"input_ids": input_ids}
828
+
829
+ model_inputs.update(
830
+ {
831
+ "position_ids": position_ids,
832
+ "past_key_values": past_key_values,
833
+ "use_cache": kwargs.get("use_cache"),
834
+ "attention_mask": attention_mask,
835
+ }
836
+ )
837
+ return model_inputs
838
+
839
+ @staticmethod
840
+ def _reorder_cache(past_key_values, beam_idx):
841
+ """ 用于重新排序缓存中的历史隐藏状态,以适应束搜索(beam search)算法
842
+ """
843
+ reordered_past = ()
844
+ # 遍历每一层的隐藏状态
845
+ for layer_past in past_key_values:
846
+ # 对于每一层的每个隐藏状态向量,执行索引选择操作
847
+ reordered_past += (
848
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
849
+ )
850
+ return reordered_past
851
+
852
+ def chat(self, tokenizer, messages: List[dict], stream=False, generation_config: Optional[GenerationConfig]=None):
853
+ pass
854
+
855
+ class TinyllmForSequenceClassification(TinyllmPreTrainedModel):
856
+ def __init__(self, config):
857
+ super().__init__(config)
858
+ self.num_labels = config.num_labels
859
+ self.model = TinyllmModel(config)
860
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
861
+
862
+ # Initialize weights and apply final processing
863
+ self.post_init()
864
+
865
+ def get_input_embeddings(self):
866
+ return self.model.embed_tokens
867
+
868
+ def set_input_embeddings(self, value):
869
+ self.model.embed_tokens = value
870
+
871
+ def forward(
872
+ self,
873
+ input_ids: torch.LongTensor = None,
874
+ attention_mask: Optional[torch.Tensor] = None,
875
+ position_ids: Optional[torch.LongTensor] = None,
876
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
877
+ inputs_embeds: Optional[torch.FloatTensor] = None,
878
+ labels: Optional[torch.LongTensor] = None,
879
+ use_cache: Optional[bool] = None,
880
+ output_attentions: Optional[bool] = None,
881
+ output_hidden_states: Optional[bool] = None,
882
+ return_dict: Optional[bool] = None,
883
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
884
+
885
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
886
+
887
+ transformer_outputs = self.model(
888
+ input_ids,
889
+ attention_mask=attention_mask,
890
+ position_ids=position_ids,
891
+ past_key_values=past_key_values,
892
+ inputs_embeds=inputs_embeds,
893
+ use_cache=use_cache,
894
+ output_attentions=output_attentions,
895
+ output_hidden_states=output_hidden_states,
896
+ return_dict=return_dict,
897
+ )
898
+ hidden_states = transformer_outputs[0]
899
+ logits = self.score(hidden_states)
900
+
901
+ if input_ids is not None:
902
+ batch_size = input_ids.shape[0]
903
+ else:
904
+ batch_size = inputs_embeds.shape[0]
905
+
906
+ if self.config.pad_token_id is None and batch_size != 1:
907
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
908
+ # 确定输入序列的有效长度,即从起始到第一个填充符出现之前的所有非填充字符的数量
909
+ if self.config.pad_token_id is None:
910
+ # 无法计算有效长度
911
+ sequence_lengths = -1
912
+ else:
913
+ if input_ids is not None:
914
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
915
+ # 对于给定的输入IDs(input_ids),查找其中等于填充符ID的位置
916
+ # argmax(-1)作用在最后一个维度上,找到每个序列中填充符首次出现的最大索引位置
917
+ # 因为索引是从0开始的,减去1可得到每个序列的有效字符数(不含填充符)
918
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
919
+ # 为了保证与ONNX兼容以及防止越界,当序列尾部被完全填充时,采用模运算来保持有效长度
920
+ # 即使索引超过了输入序列的实际长度,也会自动对应回到有效的范围之内
921
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
922
+ # 确保计算出的序列长度在与logits相同的设备上,便于后续操作
923
+ sequence_lengths = sequence_lengths.to(logits.device)
924
+ else:
925
+ sequence_lengths = -1
926
+
927
+ # 提取实际标签对应的logits
928
+ # 使用arange函数生成一个从0到batch_size-1的索引,并与sequence_lengths结合,
929
+ # 选取每个样本的有效logit
930
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
931
+
932
+ loss = None
933
+ if labels is not None:
934
+ labels = labels.to(logits.device)
935
+ # 若模型配置没有明确指定 problem_type ,则根据num_labels和labels的数据类型推断 problem_type
936
+ if self.config.problem_type is None:
937
+ if self.num_labels == 1:
938
+ self.config.problem_type = "regression"
939
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
940
+ self.config.problem_type = "single_label_classification"
941
+ else:
942
+ self.config.problem_type = "multi_label_classification"
943
+
944
+ if self.config.problem_type == "regression":
945
+ # 使用均方误差损失函数
946
+ loss_fct = MSELoss()
947
+ # 如果num_labels为1,则直接计算单输出的损失;否则,按列计算所有输出的损失
948
+ if self.num_labels == 1:
949
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
950
+ else:
951
+ loss = loss_fct(pooled_logits, labels)
952
+ elif self.config.problem_type == "single_label_classification":
953
+ # 单标签分类任务,使用交叉熵损失函数
954
+ loss_fct = CrossEntropyLoss()
955
+ # 将pooled_logits展平为(batch_size * num_labels)的形式,与同样展平后的labels进行比较
956
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
957
+ elif self.config.problem_type == "multi_label_classification":
958
+ # 多标签分类任务,使用带Sigmoid激活的二元交叉熵损失函数
959
+ loss_fct = BCEWithLogitsLoss()
960
+ # 直接计算sigmoid之前的logits与标签之间的损失
961
+ loss = loss_fct(pooled_logits, labels)
962
+
963
+ if not return_dict:
964
+ output = (pooled_logits,) + transformer_outputs[1:]
965
+ return ((loss,) + output) if loss is not None else output
966
+
967
+ return SequenceClassifierOutputWithPast(
968
+ loss=loss,
969
+ logits=pooled_logits,
970
+ past_key_values=transformer_outputs.past_key_values,
971
+ hidden_states=transformer_outputs.hidden_states,
972
+ attentions=transformer_outputs.attentions,
973
+ )
974
+
975
+ def print_model_parameters(model):
976
+ """ 打印模型各个层参数
977
+ """
978
+ param_sum = 0
979
+ for name, param in model.named_parameters():
980
+ if param.requires_grad:
981
+ param_sum += param.numel()
982
+ print(f"Layer: {name}, Parameters: {param.numel()}")
983
+ print(f"Total of parameters: {param_sum}")
984
+
985
+ if __name__ == "__main__":
986
+ # vocav size https://github.com/THUDM/ChatGLM3/issues/634
987
+ args_1480m = TinyllmConfig(
988
+ hidden_size=2048,
989
+ num_hidden_layers=24,
990
+ num_attention_heads=16,
991
+ intermediate_size=5504,
992
+ rope_theta=10000.0,
993
+ max_position_embeddings=1024,
994
+ vocab_size=64798,
995
+ )
996
+
997
+ args_440m = TinyllmConfig(
998
+ hidden_size=1024,
999
+ num_hidden_layers=24,
1000
+ num_attention_heads=16,
1001
+ intermediate_size=2816,
1002
+ rope_theta=10000.0,
1003
+ max_position_embeddings=1024,
1004
+ vocab_size=64798,
1005
+ )
1006
+
1007
+ args_210m = TinyllmConfig(
1008
+ hidden_size=768,
1009
+ num_hidden_layers=16,
1010
+ num_attention_heads=12,
1011
+ intermediate_size=2048,
1012
+ rope_theta=10000.0,
1013
+ max_position_embeddings=1024,
1014
+ vocab_size=64798,
1015
+ )
1016
+
1017
+ args_92m = TinyllmConfig(
1018
+ hidden_size=512,
1019
+ num_hidden_layers=8,
1020
+ num_attention_heads=8,
1021
+ intermediate_size=1408,
1022
+ rope_theta=10000.0,
1023
+ max_position_embeddings=1024,
1024
+ vocab_size=64798,
1025
+ )
1026
+
1027
+ args_42m = TinyllmConfig(
1028
+ hidden_size=288,
1029
+ num_hidden_layers=6,
1030
+ num_attention_heads=6,
1031
+ intermediate_size=768,
1032
+ rope_theta=10000.0,
1033
+ max_position_embeddings=512,
1034
+ vocab_size=64798,
1035
+ )
1036
+
1037
+ args_16m = TinyllmConfig(
1038
+ hidden_size=120,
1039
+ num_hidden_layers=6,
1040
+ num_attention_heads=6,
1041
+ intermediate_size=384,
1042
+ rope_theta=10000.0,
1043
+ max_position_embeddings=512,
1044
+ vocab_size=64798,
1045
+ )
1046
+
1047
+ model = TinyllmForCausalLM(args_210m)
1048
+
1049
+ inputs_ids = torch.tensor([[1,2,4],[4,3,2]])
1050
+ labels = torch.tensor([[1,4,3],[2,3,1]])
1051
+ print(inputs_ids.shape)
1052
+ outputs = model(input_ids=inputs_ids, labels=labels)
1053
+ print(outputs.logits)
1054
+ print(outputs.loss)
1055
+
1056
+ # print_model_parameters(model)
1057
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27541cad46d5000b5012b23c410cc966a3ec03ff7f070ecfe86ba6c49bfb326a
3
+ size 184142076
tokenization_chatglm.py ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ from typing import List, Optional, Union, Dict
5
+ from sentencepiece import SentencePieceProcessor
6
+ from transformers import PreTrainedTokenizer
7
+ from transformers.utils import logging, PaddingStrategy
8
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
9
+
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+
14
+ class SPTokenizer:
15
+ def __init__(self, model_path: str):
16
+ # reload tokenizer
17
+ assert os.path.isfile(model_path), model_path
18
+ self.sp_model = SentencePieceProcessor(model_file=model_path)
19
+
20
+ # BOS / EOS token IDs
21
+ self.n_words: int = self.sp_model.vocab_size()
22
+ self.bos_id: int = self.sp_model.bos_id()
23
+ self.eos_id: int = self.sp_model.eos_id()
24
+ self.pad_id: int = self.sp_model.unk_id()
25
+ # 确保vocab_size与piece数量一致
26
+ assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
27
+
28
+ # 定义聊天角色相关的特殊token
29
+ role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
30
+ # 添加额外的通用特殊token
31
+ special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
32
+ # 创建特殊token与ID之间的映射关系
33
+ self.special_tokens = {}
34
+ self.index_special_tokens = {}
35
+ for token in special_tokens:
36
+ # 分配新的词汇表ID给特殊token
37
+ self.special_tokens[token] = self.n_words
38
+ self.index_special_tokens[self.n_words] = token
39
+ self.n_words += 1
40
+ # 生成正则表达式,用于在apply_chat_template方法中查找特殊token
41
+ self.role_special_token_expression = "|".join([re.escape(token) for token in special_tokens]) # for apply_chat_template
42
+
43
+ def tokenize(self, s: str, encode_special_tokens=False):
44
+ """ 对输入字符串进行分词操作,可选择是否编码特殊token
45
+ """
46
+ if encode_special_tokens:
47
+ # 对特殊字符进行处理
48
+ last_index = 0
49
+ t = []
50
+ for match in re.finditer(self.role_special_token_expression, s):
51
+ # 查找并保留非特殊token部分的分词结果
52
+ if last_index < match.start():
53
+ t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
54
+ # 直接添加特殊token
55
+ t.append(s[match.start():match.end()])
56
+ last_index = match.end()
57
+ # 处理剩余非特殊token部分
58
+ if last_index < len(s):
59
+ t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
60
+ return t
61
+ else:
62
+ # 当encode_special_tokens为False时,直接调用SentencePiece模型进行分词
63
+ return self.sp_model.EncodeAsPieces(s)
64
+
65
+ def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
66
+ """ 将字符串转化为ID列表,可选择是否添加BOS/EOS token
67
+ """
68
+ assert type(s) is str
69
+ t = self.sp_model.encode(s)
70
+ if bos:
71
+ t = [self.bos_id] + t
72
+ if eos:
73
+ t = t + [self.eos_id]
74
+ return t
75
+
76
+ def decode(self, t: List[int]) -> str:
77
+ """ 将ID列表解码为字符串
78
+ """
79
+ text, buffer = "", []
80
+ for token in t:
81
+ # 处理特殊tokenID转字符串
82
+ if token in self.index_special_tokens:
83
+ if buffer:
84
+ text += self.sp_model.decode(buffer)
85
+ buffer = []
86
+ text += self.index_special_tokens[token]
87
+ else:
88
+ buffer.append(token)
89
+ # 解码剩余普通tokenID
90
+ if buffer:
91
+ text += self.sp_model.decode(buffer)
92
+ return text
93
+
94
+ def decode_tokens(self, tokens: List[str]) -> str:
95
+ """ 将分词结果(List[str])解码为字符串
96
+ """
97
+ text = self.sp_model.DecodePieces(tokens)
98
+ return text
99
+
100
+ def convert_token_to_id(self, token):
101
+ """ 将给定的token字符串转化为对应的ID
102
+ """
103
+ if token in self.special_tokens:
104
+ return self.special_tokens[token]
105
+ return self.sp_model.PieceToId(token)
106
+
107
+ def convert_id_to_token(self, index):
108
+ """ 将给定的ID转化为对应的token字符串
109
+ """
110
+ # 处理特殊tokenID
111
+ if index in self.index_special_tokens:
112
+ return self.index_special_tokens[index]
113
+ # 处理边界情况和其他特殊ID
114
+ if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0 or index > self.sp_model.vocab_size():
115
+ return ""
116
+ # 将普通ID转换为token
117
+ return self.sp_model.IdToPiece(index)
118
+
119
+
120
+ class ChatGLMTokenizer(PreTrainedTokenizer):
121
+ # 预训练模型所需的文件名配置,这里指向tokenizer的model文件
122
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
123
+ # 模型输入的特征名称列表
124
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
125
+
126
+ def __init__(
127
+ self,
128
+ vocab_file,
129
+ padding_side="left",
130
+ clean_up_tokenization_spaces=False,
131
+ encode_special_tokens=False,
132
+ **kwargs
133
+ ):
134
+ # 设置tokenizer的名称
135
+ self.name = "GLMTokenizer"
136
+ # 存储vocab文件路径
137
+ self.vocab_file = vocab_file
138
+ # 使用SPTokenizer作为基础分词器
139
+ self.tokenizer = SPTokenizer(vocab_file)
140
+ # 定义特殊token及其对应的ID
141
+ self.special_tokens = {
142
+ "<bos>": self.tokenizer.bos_id,
143
+ "<eos>": self.tokenizer.eos_id,
144
+ "<unk>": self.tokenizer.pad_id,
145
+ "<pad>": self.tokenizer.pad_id
146
+ }
147
+ self.encode_special_tokens = encode_special_tokens
148
+
149
+ super().__init__(
150
+ padding_side=padding_side,
151
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
152
+ **kwargs
153
+ )
154
+
155
+ def get_command(self, token):
156
+ """ 获取指定特殊 token 对应的 id
157
+ """
158
+ if token in self.special_tokens:
159
+ return self.special_tokens[token]
160
+ # 如果不在自定义特殊 token 中,则从基础SPTokenizer的特殊 token 中查找
161
+ assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
162
+ return self.tokenizer.special_tokens[token]
163
+
164
+ @property
165
+ def unk_token(self) -> str:
166
+ """ 通过ID获取未登录词、填充符和结束符的字符串形式
167
+ """
168
+ return self.tokenizer.sp_model.IdToPiece(self.get_command("<unk>"))
169
+
170
+ @property
171
+ def pad_token(self) -> str:
172
+ return self.tokenizer.sp_model.IdToPiece(self.get_command("<pad>"))
173
+
174
+ @property
175
+ def eos_token(self) -> str:
176
+ return self.tokenizer.sp_model.IdToPiece(self.get_command("<eos>"))
177
+
178
+ @property
179
+ def unk_token_id(self) -> int:
180
+ """ 获取未登录词、填充符和结束符的ID形式
181
+ """
182
+ return self.get_command("<unk>")
183
+
184
+ @property
185
+ def pad_token_id(self) -> int:
186
+ return self.get_command("<pad>")
187
+
188
+ @property
189
+ def eos_token_id(self):
190
+ return self.get_command("<eos>")
191
+
192
+ @unk_token.setter
193
+ def unk_token(self, value):
194
+ """ 不支持设置未登录词、填充符和结束符,输出警告信息
195
+ """
196
+ logger.warning("Setting unk_token is not supported, use the default one.")
197
+
198
+ @pad_token.setter
199
+ def pad_token(self, value):
200
+ logger.warning("Setting pad_token is not supported, use the default one.")
201
+
202
+ @eos_token.setter
203
+ def eos_token(self, value):
204
+ logger.warning("Setting eos_token is not supported, use the default one.")
205
+
206
+ @property
207
+ def vocab_size(self):
208
+ """ 返回整个词汇表的大小
209
+ """
210
+ return self.tokenizer.n_words
211
+
212
+ def get_vocab(self):
213
+ """ 获取词汇表字典,其中键是token,值是其对应的ID
214
+ """
215
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
216
+ vocab.update(self.added_tokens_encoder)
217
+ return vocab
218
+
219
+ def _tokenize(self, text, **kwargs):
220
+ """ 实现分词功能,利用SPTokenizer进行分词操作
221
+ """
222
+ return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
223
+
224
+ def _convert_token_to_id(self, token):
225
+ """ 将token字符串转化为ID
226
+ """
227
+ return self.tokenizer.convert_token_to_id(token)
228
+
229
+ def _convert_id_to_token(self, index):
230
+ """ 将ID转化为token字符串
231
+ """
232
+ return self.tokenizer.convert_id_to_token(index)
233
+
234
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
235
+ """ 将分词结果的tokens列表还原为字符串
236
+ """
237
+ return self.tokenizer.decode_tokens(tokens)
238
+
239
+ def save_vocabulary(self, save_directory, filename_prefix=None):
240
+ """ 将词汇表和特殊令牌token保存到指定目录。
241
+
242
+ Args:
243
+ save_directory (`str`): 将词汇表和特殊令牌文件保存到指定目录。
244
+ filename_prefix (`str`, *optional*): 可选添加到保存文件名前的前缀。
245
+
246
+ Returns:
247
+ `Tuple(str)`: 保存文件的路径
248
+ """
249
+ if os.path.isdir(save_directory):
250
+ vocab_file = os.path.join(
251
+ save_directory, self.vocab_files_names["vocab_file"]
252
+ )
253
+ else:
254
+ vocab_file = save_directory
255
+
256
+ with open(self.vocab_file, 'rb') as fin:
257
+ proto_str = fin.read()
258
+
259
+ with open(vocab_file, "wb") as writer:
260
+ writer.write(proto_str)
261
+
262
+ return (vocab_file,)
263
+
264
+ def get_prefix_tokens(self):
265
+ """ 获取用于模型输入的前缀 token
266
+ """
267
+ prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
268
+ return prefix_tokens
269
+
270
+ def build_single_message(self, role, metadata, message):
271
+ """ 构建单条消息的 token 序列
272
+ """
273
+ assert role in ["system", "user", "assistant", "observation"], role
274
+ # 构建角色标识Token序列
275
+ role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
276
+ # 构建消息正文Token序列
277
+ message_tokens = self.tokenizer.encode(message)
278
+ # 合并角色标识Token与消息正文Token
279
+ tokens = role_tokens + message_tokens
280
+ return tokens
281
+
282
+ def build_chat_input(self, query, history=None, role="user"):
283
+ """ 根据对话历史及当前query构建模型输入
284
+ """
285
+ if history is None:
286
+ history = []
287
+ input_ids = []
288
+ # 遍历对话历史
289
+ for item in history:
290
+ # 获取内容
291
+ content = item["content"]
292
+ # 若为系统消息且包含工具信息,将其加入内容
293
+ if item["role"] == "system" and "tools" in item:
294
+ content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
295
+ # 构建单条历史消息的Token序列并加入到模型输入ID列表
296
+ input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
297
+ # 构建当前query的Token序列并加入到模型输入ID列表
298
+ input_ids.extend(self.build_single_message(role, "", query))
299
+ # 添加表示回复的assistant标记
300
+ input_ids.extend([self.get_command("<|assistant|>")])
301
+ # 调用tokenizer批量编码方法,返回PyTorch张量形式的模型输入
302
+ return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
303
+
304
+ def build_inputs_with_special_tokens(
305
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
306
+ ) -> List[int]:
307
+ """ 通过拼接和添加特殊标记,从一个或两个序列构建用于序列分类任务的模型输入。
308
+
309
+ BERT序列格式如下:
310
+ - 单一序列:`[CLS] X [SEP]`
311
+ - 序列对:`[CLS] A [SEP] B [SEP]`
312
+
313
+ Args:
314
+ token_ids_0 (`List[int]`): 将添加特殊token的IDs列表
315
+ token_ids_1 (`List[int]`, *optional*): 可选的第二个序列的IDs列表,用于序列对。
316
+
317
+ Returns:
318
+ `List[int]`: 包含适当特殊标记的[输入IDs](../glossary#input-ids)列表。
319
+ """
320
+ # 获取前缀标记
321
+ prefix_tokens = self.get_prefix_tokens()
322
+ # 在token_ids_0前添加前缀标记
323
+ token_ids_0 = prefix_tokens + token_ids_0
324
+ # 若存在token_ids_1,将token_ids_0、token_ids_1连接,并添加结束标记,然后返回
325
+ if token_ids_1 is not None:
326
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
327
+ return token_ids_0
328
+
329
+ def _pad(
330
+ self,
331
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
332
+ max_length: Optional[int] = None,
333
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
334
+ pad_to_multiple_of: Optional[int] = None,
335
+ return_attention_mask: Optional[bool] = None,
336
+ ) -> dict:
337
+ """ 此方法用于对编码后的输入进行填充(左右两侧填充,直至达到预设长度或批次中的最大长度)
338
+
339
+ Args:
340
+ encoded_inputs: 字典形式的编码后输入,键为特征名称,值为整数列表(例如,`List[int]`),或者一批编码后的输入(例如,`List[List[int]]`)。
341
+ max_length: 返回列表的最大长度,也可作为填充长度
342
+ padding_strategy: 填充策略,有以下选项:
343
+ - PaddingStrategy.LONGEST : 根据批次中最长序列进行填充
344
+ - PaddingStrategy.MAX_LENGTH: 默认策略,填充至最大长度
345
+ - PaddingStrategy.DO_NOT_PAD: 不进行填充
346
+ 本tokenizer的填充方向由self.padding_side属性决定:
347
+ - 'left': 在序列左侧填充
348
+ - 'right': 在序列右侧填充
349
+ pad_to_multiple_of: (可选)若设置,则将序列填充至给定值的倍数。这对于在NVIDIA硬件上启用具有计算能力`>= 7.5`(Volta及以上)的Tensor Core非常有用。
350
+ return_attention_mask:(可选)若设置为False,则避免返回注意力掩码(默认:根据模型特性设置
351
+ """
352
+ # 从模型默认设置中加载填充侧信息
353
+ assert self.padding_side == "left"
354
+
355
+ # 获取必要的输入特征,这里假设第一个特征为主要输入特征
356
+ required_input = encoded_inputs[self.model_input_names[0]]
357
+ seq_length = len(required_input)
358
+
359
+ # 如果填充策略为最长序列,则将最大长度设置为当前序列长度
360
+ if padding_strategy == PaddingStrategy.LONGEST:
361
+ max_length = len(required_input)
362
+
363
+ # 计算实际最大长度,确保满足pad_to_multiple_of的要求
364
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
365
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
366
+
367
+ # 判断是否需要填充
368
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
369
+
370
+ # 若不存在注意力掩码,则初始化
371
+ if "attention_mask" not in encoded_inputs:
372
+ encoded_inputs["attention_mask"] = [1] * seq_length
373
+
374
+ if "position_ids" not in encoded_inputs:
375
+ encoded_inputs["position_ids"] = list(range(seq_length))
376
+
377
+ # 若需要填充,则执行填充操作
378
+ if needs_to_be_padded:
379
+ difference = max_length - len(required_input)
380
+ # 对注意力掩码进行填充
381
+ if "attention_mask" in encoded_inputs:
382
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
383
+ # 对位置标识进行填充
384
+ if "position_ids" in encoded_inputs:
385
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
386
+ # 对主要输入特征进行填充
387
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
388
+
389
+ return encoded_inputs
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
3
+ size 1018370
tokenizer_config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "64790": {
4
+ "content": "[gMASK]",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "64792": {
12
+ "content": "sop",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": false
18
+ },
19
+ "64795": {
20
+ "content": "<|user|>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "64796": {
28
+ "content": "<|assistant|>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ }
35
+ },
36
+ "auto_map": {
37
+ "AutoTokenizer": [
38
+ "tokenization_chatglm.ChatGLMTokenizer",
39
+ null
40
+ ]
41
+ },
42
+ "chat_template": "{% for message in messages %}{% if loop.first %}[gMASK]sop<|{{ message['role'] }}|>\n {{ message['content'] }}{% else %}<|{{ message['role'] }}|>\n {{ message['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
43
+ "clean_up_tokenization_spaces": false,
44
+ "do_lower_case": false,
45
+ "eos_token": "</s>",
46
+ "model_max_length": 1000000000000000019884624838656,
47
+ "pad_token": "<unk>",
48
+ "padding_side": "left",
49
+ "remove_space": false,
50
+ "tokenizer_class": "ChatGLMTokenizer",
51
+ "unk_token": "<unk>"
52
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff