Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,76 @@
|
|
1 |
-
# MedSAM2
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MedSAM2: Medical Segment Anything Model v2
|
2 |
+
|
3 |
+
## Model Overview
|
4 |
+
MedSAM2 is an advanced segmentation model tailored for medical imaging applications. Built upon the foundation of the Segment Anything Model (SAM) architecture, MedSAM2 has been specifically adapted and fine-tuned for various medical imaging modalities including CT, MRI, and ultrasound.
|
5 |
+
|
6 |
+
## Available Models
|
7 |
+
|
8 |
+
- **MedSAM2_2411.pt**: Base model trained in November 2024
|
9 |
+
- **MedSAM2_US_Heart.pt**: Fine-tuned model specialized for heart ultrasound video segmentation
|
10 |
+
- **MedSAM2_MRI_LiverLesion.pt**: Fine-tuned model for liver lesion segmentation in MRI scans
|
11 |
+
- **MedSAM2_CTLesion.pt**: Fine-tuned model for general lesion segmentation in CT scans
|
12 |
+
- **MedSAM2_latest.pt** (recommended): Latest version trained on a comprehensive combination of public datasets and newly annotated medical imaging data
|
13 |
+
|
14 |
+
## Downloading Models
|
15 |
+
|
16 |
+
### Option 1: Download individual models
|
17 |
+
You can download the models directly from the Hugging Face repository:
|
18 |
+
|
19 |
+
```python
|
20 |
+
# Using huggingface_hub
|
21 |
+
from huggingface_hub import hf_hub_download
|
22 |
+
|
23 |
+
# Download the recommended latest model
|
24 |
+
model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_latest.pt")
|
25 |
+
|
26 |
+
# Or download a specific fine-tuned model
|
27 |
+
heart_us_model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_US_Heart.pt")
|
28 |
+
liver_model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_MRI_LiverLesion.pt")
|
29 |
+
```
|
30 |
+
|
31 |
+
### Option 2: Download all models to a specific folder
|
32 |
+
```python
|
33 |
+
from huggingface_hub import hf_hub_download
|
34 |
+
import os
|
35 |
+
|
36 |
+
# Create checkpoints directory if it doesn't exist
|
37 |
+
os.makedirs("checkpoints", exist_ok=True)
|
38 |
+
|
39 |
+
# List of model filenames
|
40 |
+
model_files = [
|
41 |
+
"MedSAM2_2411.pt",
|
42 |
+
"MedSAM2_US_Heart.pt",
|
43 |
+
"MedSAM2_MRI_LiverLesion.pt",
|
44 |
+
"MedSAM2_CTLesion.pt",
|
45 |
+
"MedSAM2_latest.pt"
|
46 |
+
]
|
47 |
+
|
48 |
+
# Download all models
|
49 |
+
for model_file in model_files:
|
50 |
+
local_path = os.path.join("checkpoints", model_file)
|
51 |
+
hf_hub_download(
|
52 |
+
repo_id="wanglab/MedSAM2",
|
53 |
+
filename=model_file,
|
54 |
+
local_dir="checkpoints",
|
55 |
+
local_dir_use_symlinks=False
|
56 |
+
)
|
57 |
+
print(f"Downloaded {model_file} to {local_path}")
|
58 |
+
```
|
59 |
+
|
60 |
+
Alternatively, you can manually download the models from the [Hugging Face repository page](https://huggingface.co/wanglab/MedSAM2).
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
## Citations
|
65 |
+
|
66 |
+
```
|
67 |
+
# Citation information will be added later
|
68 |
+
```
|
69 |
+
|
70 |
+
## License
|
71 |
+
|
72 |
+
# License information will be added later
|
73 |
+
|
74 |
+
## Contact
|
75 |
+
|
76 |
+
# Contact information will be added later
|