junma nielsr HF Staff commited on
Commit
8dae68f
·
verified ·
1 Parent(s): 962a97b

Add removed sections (#2)

Browse files

- Add removed sections (05818554bc41fb7f01e94d9dbee51c30472116cb)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +72 -2
README.md CHANGED
@@ -75,8 +75,78 @@ tags:
75
  - Versatile segmentation capability across diverse organs and pathologies
76
  - Extensive user studies in large-scale lesion and video datasets demonstrate that MedSAM2 substantially facilitates annotation workflows
77
 
78
-
79
  ## Model Overview
80
  MedSAM2 is a promptable segmentation segmentation model tailored for medical imaging applications. Built upon the foundation of the [Segment Anything Model (SAM) 2.1](https://github.com/facebookresearch/sam2), MedSAM2 has been specifically adapted and fine-tuned for various 3D medical images and videos.
81
 
82
- <!-- rest of the model card -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  - Versatile segmentation capability across diverse organs and pathologies
76
  - Extensive user studies in large-scale lesion and video datasets demonstrate that MedSAM2 substantially facilitates annotation workflows
77
 
 
78
  ## Model Overview
79
  MedSAM2 is a promptable segmentation segmentation model tailored for medical imaging applications. Built upon the foundation of the [Segment Anything Model (SAM) 2.1](https://github.com/facebookresearch/sam2), MedSAM2 has been specifically adapted and fine-tuned for various 3D medical images and videos.
80
 
81
+ ## Available Models
82
+
83
+ - **MedSAM2_2411.pt**: Base model trained in November 2024
84
+ - **MedSAM2_US_Heart.pt**: Fine-tuned model specialized for heart ultrasound video segmentation
85
+ - **MedSAM2_MRI_LiverLesion.pt**: Fine-tuned model for liver lesion segmentation in MRI scans
86
+ - **MedSAM2_CTLesion.pt**: Fine-tuned model for general lesion segmentation in CT scans
87
+ - **MedSAM2_latest.pt** (recommended): Latest version trained on the combination of public datasets and newly annotated medical imaging data
88
+
89
+ ## Downloading Models
90
+
91
+ ### Option 1: Download individual models
92
+ You can download the models directly from the Hugging Face repository:
93
+
94
+ ```python
95
+ # Using huggingface_hub
96
+ from huggingface_hub import hf_hub_download
97
+
98
+ # Download the recommended latest model
99
+ model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_latest.pt")
100
+
101
+ # Or download a specific fine-tuned model
102
+ heart_us_model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_US_Heart.pt")
103
+ liver_model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_MRI_LiverLesion.pt")
104
+ ```
105
+
106
+ ### Option 2: Download all models to a specific folder
107
+ ```python
108
+ from huggingface_hub import hf_hub_download
109
+ import os
110
+
111
+ # Create checkpoints directory if it doesn't exist
112
+ os.makedirs("checkpoints", exist_ok=True)
113
+
114
+ # List of model filenames
115
+ model_files = [
116
+ "MedSAM2_2411.pt",
117
+ "MedSAM2_US_Heart.pt",
118
+ "MedSAM2_MRI_LiverLesion.pt",
119
+ "MedSAM2_CTLesion.pt",
120
+ "MedSAM2_latest.pt"
121
+ ]
122
+
123
+ # Download all models
124
+ for model_file in model_files:
125
+ local_path = os.path.join("checkpoints", model_file)
126
+ hf_hub_download(
127
+ repo_id="wanglab/MedSAM2",
128
+ filename=model_file,
129
+ local_dir="checkpoints",
130
+ local_dir_use_symlinks=False
131
+ )
132
+ print(f"Downloaded {model_file} to {local_path}")
133
+ ```
134
+
135
+ Alternatively, you can manually download the models from the [Hugging Face repository page](https://huggingface.co/wanglab/MedSAM2).
136
+
137
+
138
+
139
+ ## Citations
140
+
141
+ ```
142
+ @article{MedSAM2,
143
+ title={MedSAM2: Segment Anything in 3D Medical Images and Videos},
144
+ author={Ma, Jun and Yang, Zongxin and Kim, Sumin and Chen, Bihui and Baharoon, Mohammed and Fallahpour, Adibvafa and Asakereh, Reza and Lyu, Hongwei and Wang, Bo},
145
+ journal={arXiv preprint arXiv:2504.03600},
146
+ year={2025}
147
+ }
148
+ ```
149
+
150
+ ## License
151
+
152
+ The model weights can only be used for research and education purposes.