adibvafa commited on
Commit
1ceeecc
·
verified ·
1 Parent(s): fee4121

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -11
README.md CHANGED
@@ -15,21 +15,62 @@ datasets:
15
  - medical
16
  ---
17
 
18
- # MedSAM2: Medical Segment Anything Model v2
19
 
20
  <div align="center">
21
-
22
- [![Paper](https://img.shields.io/badge/Paper-blue?style=for-the-badge)](https://arxiv.org/abs/your-paper-link)
23
- [![HuggingFace](https://img.shields.io/badge/HuggingFace-FFD21E?style=for-the-badge&logoColor=FF9D00)](https://huggingface.co/your-username/your-model)
24
- [![Dataset List](https://img.shields.io/badge/Dataset%20List-4A90E2?style=for-the-badge&logoColor=white)](https://your-dataset-list-url.com)
25
- [![Model](https://img.shields.io/badge/Model_Name-green?style=for-the-badge)](https://your-model-link)
26
- [![Second Model](https://img.shields.io/badge/Second_Model-orange?style=for-the-badge)](https://your-second-model-link)
27
- [![App](https://img.shields.io/badge/Gradio_App-yellow?style=for-the-badge&logoColor=white)](https://your-app-url)
28
- [![Colab](https://img.shields.io/badge/CoLab-4A90E2?style=for-the-badge&logo=Google-Colab&logoColor=white)](https://colab.research.google.com/your-notebook)
29
- [![BibTeX](https://img.shields.io/badge/BibTeX-4A90E2?style=for-the-badge&logo=BibTeX&logoColor=white)](https://github.com/your-username/your-repo#citing)
30
-
 
 
 
31
  </div>
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  ## Model Overview
34
  MedSAM2 is a promptable segmentation segmentation model tailored for medical imaging applications. Built upon the foundation of the [Segment Anything Model (SAM) 2.1](https://github.com/facebookresearch/sam2), MedSAM2 has been specifically adapted and fine-tuned for various 3D medical images and videos.
35
 
 
15
  - medical
16
  ---
17
 
18
+ # MedSAM2: Segment Anything in 3D Medical Images and Videos
19
 
20
  <div align="center">
21
+ <table align="center">
22
+ <tr>
23
+ <td><a href="https://github.com/bowang-lab/MedSAM2/blob/main/tbd" target="_blank"><img src="https://img.shields.io/badge/Paper-blue?style=for-the-badge" alt="Paper"></a></td>
24
+ <td><a href="https://huggingface.co/wanglab/MedSAM2" target="_blank"><img src="https://img.shields.io/badge/HuggingFace-FFD21E?style=for-the-badge&logoColor=FF9D00" alt="HuggingFace"></a></td>
25
+ <td><a href="https://medsam-datasetlist.github.io/" target="_blank"><img src="https://img.shields.io/badge/Dataset%20List-4A90E2?style=for-the-badge&logoColor=white" alt="Dataset List"></a></td>
26
+ <td><a href="https://huggingface.co/datasets/wanglab/CT_DeepLesion-MedSAM2" target="_blank"><img src="https://img.shields.io/badge/CT__DeepLesion--MedSAM2-green?style=for-the-badge" alt="CT_DeepLesion-MedSAM2"></a></td>
27
+ <td><a href="https://huggingface.co/datasets/wanglab/LLD-MMRI-MedSAM2" target="_blank"><img src="https://img.shields.io/badge/LLD--MMRI--MedSAM2-orange?style=for-the-badge" alt="LLD-MMRI-MedSAM2"></a></td>
28
+ <td><a href="https://github.com/bowang-lab/MedSAMSlicer/tree/MedSAM2" target="_blank"><img src="https://img.shields.io/badge/3D_Slicer-black?style=for-the-badge&logo=3DSlicer&logoColor=white" alt="3D Slicer"></a></td>
29
+ <td><a href="https://github.com/bowang-lab/MedSAM2/blob/main/app.py" target="_blank"><img src="https://img.shields.io/badge/Gradio_App-yellow?style=for-the-badge&logoColor=white" alt="Gradio App"></a></td>
30
+ <td><a href="https://colab.research.google.com/drive/1MKna9Sg9c78LNcrVyG58cQQmaePZq2k2?usp=sharing" target="_blank"><img src="https://img.shields.io/badge/CoLab-4A90E2?style=for-the-badge&logo=CoLab&logoColor=white" alt="Colab"></a></td>
31
+ <td><a href="https://github.com/bowang-lab/MedSAM2#citing-medsam2" target="_blank"><img src="https://img.shields.io/badge/BibTeX-4A90E2?style=for-the-badge&logo=BibTeX&logoColor=white" alt="BibTeX"></a></td>
32
+ </tr>
33
+ </table>
34
  </div>
35
 
36
+
37
+ ## Authors
38
+
39
+ <p align="center">
40
+ <a href="https://scholar.google.com.hk/citations?hl=en&user=bW1UV4IAAAAJ&view_op=list_works&sortby=pubdate">Jun Ma</a><sup>* 1,2</sup>,
41
+ <a href="https://scholar.google.com/citations?user=8IE0CfwAAAAJ&hl=en">Zongxin Yang</a><sup>* 3</sup>,
42
+ Sumin Kim<sup>2,4,5</sup>,
43
+ Bihui Chen<sup>2,4,5</sup>,
44
+ <a href="https://scholar.google.com.hk/citations?user=U-LgNOwAAAAJ&hl=en&oi=sra">Mohammed Baharoon</a><sup>2,3,5</sup>,
45
+ <a href="https://scholar.google.com.hk/citations?user=4qvKTooAAAAJ&hl=en&oi=sra">Adibvafa Fallahpour</a><sup>2,4,5</sup>,
46
+ <a href="https://scholar.google.com.hk/citations?user=UlTJ-pAAAAAJ&hl=en&oi=sra">Reza Asakereh</a><sup>4,7</sup>,
47
+ Hongwei Lyu<sup>4</sup>,
48
+ <a href="https://wanglab.ai/index.html">Bo Wang</a><sup>† 1,2,4,5,6</sup>
49
+ </p>
50
+
51
+ <p align="center">
52
+ <sup>*</sup> Equal contribution &nbsp;&nbsp;&nbsp; <sup>†</sup> Corresponding author
53
+ </p>
54
+
55
+ <p align="center">
56
+ <sup>1</sup>AI Collaborative Centre, University Health Network, Toronto, Canada<br>
57
+ <sup>2</sup>Vector Institute for Artificial Intelligence, Toronto, Canada<br>
58
+ <sup>3</sup>Department of Biomedical Informatics, Harvard Medical School, Harvard University, Boston, USA<br>
59
+ <sup>4</sup>Peter Munk Cardiac Centre, University Health Network, Toronto, Canada<br>
60
+ <sup>5</sup>Department of Computer Science, University of Toronto, Toronto, Canada<br>
61
+ <sup>6</sup>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada<br>
62
+ <sup>7</sup>Roche Canada and Genentech
63
+ </p>
64
+
65
+
66
+ ## Highlights
67
+
68
+ - A promptable foundation model for 3D medical image and video segmentation
69
+ - Trained on 455,000+ 3D image-mask pairs and 76,000+ annotated video frames
70
+ - Versatile segmentation capability across diverse organs and pathologies
71
+ - Extensive user studies in large-scale lesion and video datasets demonstrate that MedSAM2 substantially facilitates annotation workflows
72
+
73
+
74
  ## Model Overview
75
  MedSAM2 is a promptable segmentation segmentation model tailored for medical imaging applications. Built upon the foundation of the [Segment Anything Model (SAM) 2.1](https://github.com/facebookresearch/sam2), MedSAM2 has been specifically adapted and fine-tuned for various 3D medical images and videos.
76