import math import torch import torch.nn as nn import torch.nn.functional as F class LayerNorm(nn.Module): def __init__(self, ndim, bias=True): super().__init__() self.weight = nn.Parameter(torch.ones(ndim)) self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None def forward(self, x): return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5) class MultiHeadAttention(nn.Module): def __init__(self, config): super().__init__() self.config = config self.n_head = config.n_head self.head_dim = config.n_embd // config.n_head self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() # batch, sequence length, embedding dim # calculate query, key, values q, k, v = self.c_attn(x).split(self.config.n_embd, dim=2) k = k.view(B, T, self.n_head, self.head_dim).transpose(1, 2) q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2) v = v.view(B, T, self.n_head, self.head_dim).transpose(1, 2) # causal self-attention att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v y = y.transpose(1, 2).contiguous().view(B, T, C) return self.resid_dropout(self.c_proj(y)) class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) self.gelu = nn.GELU() self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) self.dropout = nn.Dropout(config.dropout) def forward(self, x): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) x = self.dropout(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) self.attn = MultiHeadAttention(config) self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class ModelConfig: def __init__(self, vocab_size=50257, block_size=1024, n_layer=24, n_head=16, n_embd=1024, dropout=0.1, bias=True): self.vocab_size = vocab_size self.block_size = block_size self.n_layer = n_layer self.n_head = n_head self.n_embd = n_embd self.dropout = dropout self.bias = bias def count_parameters(model): """Count number of trainable parameters in the model""" total = sum(p.numel() for p in model.parameters() if p.requires_grad) # Calculate parameters for each component embedding_params = model.transformer.wte.weight.numel() + model.transformer.wpe.weight.numel() attention_params = 0 mlp_params = 0 layer_norm_params = 0 for block in model.transformer.h: # Attention parameters attention_params += ( block.attn.c_attn.weight.numel() + (block.attn.c_attn.bias.numel() if block.attn.c_attn.bias is not None else 0) + block.attn.c_proj.weight.numel() + (block.attn.c_proj.bias.numel() if block.attn.c_proj.bias is not None else 0) ) # MLP parameters mlp_params += ( block.mlp.c_fc.weight.numel() + (block.mlp.c_fc.bias.numel() if block.mlp.c_fc.bias is not None else 0) + block.mlp.c_proj.weight.numel() + (block.mlp.c_proj.bias.numel() if block.mlp.c_proj.bias is not None else 0) ) # Layer norm parameters layer_norm_params += ( block.ln_1.weight.numel() + (block.ln_1.bias.numel() if block.ln_1.bias is not None else 0) + block.ln_2.weight.numel() + (block.ln_2.bias.numel() if block.ln_2.bias is not None else 0) ) # Final layer norm layer_norm_params += ( model.transformer.ln_f.weight.numel() + (model.transformer.ln_f.bias.numel() if model.transformer.ln_f.bias is not None else 0) ) # Print detailed breakdown print(f"\nParameter Count Breakdown:") print(f"Embeddings: {embedding_params:,} parameters") print(f"Attention Layers: {attention_params:,} parameters") print(f"MLP Layers: {mlp_params:,} parameters") print(f"Layer Normalization: {layer_norm_params:,} parameters") print(f"Total: {total:,} parameters") return total class SmallLanguageModel(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), drop = nn.Dropout(config.dropout), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = LayerNorm(config.n_embd, bias=config.bias), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.transformer.wte.weight = self.lm_head.weight # Initialize weights self.apply(self._init_weights) print("\nModel Configuration:") print(f"Layers: {config.n_layer}") print(f"Heads: {config.n_head}") print(f"Embedding Dimension: {config.n_embd}") print(f"Context Window: {config.block_size}") count_parameters(self) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, input_ids, targets=None): device = input_ids.device b, t = input_ids.size() pos = torch.arange(0, t, dtype=torch.long, device=device) # forward the model tok_emb = self.transformer.wte(input_ids) pos_emb = self.transformer.wpe(pos) x = self.transformer.drop(tok_emb + pos_emb) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) logits = self.lm_head(x) if targets is not None: # Reshape logits and targets for loss calculation logits = logits.reshape(-1, logits.size(-1)) targets = targets.reshape(-1) loss = F.cross_entropy(logits, targets) return logits, loss return logits