Commit
·
3e442e7
1
Parent(s):
20542a8
Upload stable_diffusion_custom_v4_1.py
Browse files- stable_diffusion_custom_v4_1.py +795 -0
stable_diffusion_custom_v4_1.py
ADDED
@@ -0,0 +1,795 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from diffusers import StableDiffusionPipeline
|
3 |
+
# from diffusers.schedulers.scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
|
4 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput, AutoencoderKL, CLIPTextModel, CLIPTokenizer, UNet2DConditionModel, KarrasDiffusionSchedulers, StableDiffusionSafetyChecker, CLIPImageProcessor
|
5 |
+
from compel import Compel
|
6 |
+
from onediff.utils.tokenizer import TextualInversionLoaderMixin, MultiTokenCLIPTokenizer
|
7 |
+
import torch
|
8 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
9 |
+
from dynamicprompts.generators import RandomPromptGenerator
|
10 |
+
import time
|
11 |
+
from compel import Compel
|
12 |
+
from onediff.utils.prompt_parser import ScheduledPromptConditioning
|
13 |
+
from onediff.utils.prompt_parser import get_learned_conditioning_prompt_schedules
|
14 |
+
from dynamicprompts.generators import RandomPromptGenerator
|
15 |
+
import tqdm
|
16 |
+
from cachetools import LRUCache
|
17 |
+
from onediff.utils.image_processor import VaeImageProcessor
|
18 |
+
|
19 |
+
|
20 |
+
class CustomStableDiffusionPipeline4_1(TextualInversionLoaderMixin, StableDiffusionPipeline):
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
vae: AutoencoderKL,
|
24 |
+
text_encoder: CLIPTextModel,
|
25 |
+
tokenizer: CLIPTokenizer,
|
26 |
+
unet: UNet2DConditionModel,
|
27 |
+
scheduler: KarrasDiffusionSchedulers,
|
28 |
+
safety_checker: StableDiffusionSafetyChecker,
|
29 |
+
feature_extractor: CLIPImageProcessor,
|
30 |
+
requires_safety_checker: bool = True,
|
31 |
+
prompt_cache_size: int = 1024,
|
32 |
+
prompt_cache_ttl: int = 60 * 2,
|
33 |
+
) -> None:
|
34 |
+
super().__init__(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler,
|
35 |
+
safety_checker=safety_checker, feature_extractor=feature_extractor, requires_safety_checker=requires_safety_checker)
|
36 |
+
|
37 |
+
self.vae_scale_factor = 2 ** (
|
38 |
+
len(self.vae.config.block_out_channels) - 1)
|
39 |
+
self.image_processor = VaeImageProcessor(
|
40 |
+
vae_scale_factor=self.vae_scale_factor)
|
41 |
+
self.register_to_config(
|
42 |
+
requires_safety_checker=requires_safety_checker)
|
43 |
+
|
44 |
+
self.compel = Compel(tokenizer=self.tokenizer,
|
45 |
+
text_encoder=self.text_encoder, truncate_long_prompts=False)
|
46 |
+
self.cache = LRUCache(maxsize=prompt_cache_size)
|
47 |
+
|
48 |
+
self.cached_uc = [None, None]
|
49 |
+
self.cached_c = [None, None]
|
50 |
+
|
51 |
+
self.prompt_handler = None
|
52 |
+
|
53 |
+
def build_scheduled_cond(self, prompt, steps, key):
|
54 |
+
prompt_schedule = get_learned_conditioning_prompt_schedules([prompt], steps)[
|
55 |
+
0]
|
56 |
+
|
57 |
+
cached = self.cache.get(key, None)
|
58 |
+
if cached is not None:
|
59 |
+
return cached
|
60 |
+
|
61 |
+
texts = [x[1] for x in prompt_schedule]
|
62 |
+
conds = [self.compel.build_conditioning_tensor(
|
63 |
+
text).to('cpu') for text in texts]
|
64 |
+
|
65 |
+
cond_schedule = []
|
66 |
+
for i, s in enumerate(prompt_schedule):
|
67 |
+
cond_schedule.append(ScheduledPromptConditioning(s[0], conds[i]))
|
68 |
+
|
69 |
+
self.cache[key] = cond_schedule
|
70 |
+
return cond_schedule
|
71 |
+
|
72 |
+
def initialize_magic_prompt_cache(self, pos_prompt_template: str, plain_prompt_template: str, neg_prompt_template: str, num_to_generate: int, steps: int):
|
73 |
+
r"""
|
74 |
+
Initializes the magic prompt cache for the forward pass.
|
75 |
+
Must be called immedaitely after Compel is loaded and embeds are initalized.
|
76 |
+
"""
|
77 |
+
rpg = RandomPromptGenerator(ignore_whitespace=True, seed=555)
|
78 |
+
positive_prompts = rpg.generate(
|
79 |
+
template=pos_prompt_template, num_images=num_to_generate)
|
80 |
+
scheduled_conds = []
|
81 |
+
with torch.no_grad():
|
82 |
+
cache = {}
|
83 |
+
for i in tqdm.tqdm(range(len(positive_prompts))):
|
84 |
+
scheduled_conds.append(self.build_scheduled_cond(
|
85 |
+
positive_prompts[i], steps, cache))
|
86 |
+
|
87 |
+
plain_scheduled_cond = self.build_scheduled_cond(
|
88 |
+
plain_prompt_template, steps, cache)
|
89 |
+
|
90 |
+
scheduled_uncond = self.build_scheduled_cond(
|
91 |
+
neg_prompt_template, steps, cache)
|
92 |
+
|
93 |
+
self.scheduled_conds = scheduled_conds
|
94 |
+
self.plain_scheduled_cond = plain_scheduled_cond
|
95 |
+
self.scheduled_uncond = scheduled_uncond
|
96 |
+
|
97 |
+
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
|
98 |
+
r"""
|
99 |
+
Encodes the prompt into text encoder hidden states.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
prompt (`str` or `list(int)`):
|
103 |
+
prompt to be encoded
|
104 |
+
device: (`torch.device`):
|
105 |
+
torch device
|
106 |
+
num_images_per_prompt (`int`):
|
107 |
+
number of images that should be generated per prompt
|
108 |
+
do_classifier_free_guidance (`bool`):
|
109 |
+
whether to use classifier free guidance or not
|
110 |
+
negative_prompt (`str` or `List[str]`):
|
111 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
112 |
+
if `guidance_scale` is less than `1`).
|
113 |
+
"""
|
114 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
115 |
+
|
116 |
+
text_inputs = self.tokenizer(
|
117 |
+
prompt,
|
118 |
+
padding="max_length",
|
119 |
+
max_length=self.tokenizer.model_max_length,
|
120 |
+
truncation=True,
|
121 |
+
return_tensors="np",
|
122 |
+
)
|
123 |
+
text_input_ids = text_inputs.input_ids
|
124 |
+
text_input_ids = torch.from_numpy(text_input_ids)
|
125 |
+
untruncated_ids = self.tokenizer(
|
126 |
+
prompt, padding="max_length", return_tensors="np").input_ids
|
127 |
+
untruncated_ids = torch.from_numpy(untruncated_ids)
|
128 |
+
|
129 |
+
if (
|
130 |
+
text_input_ids.shape == untruncated_ids.shape
|
131 |
+
and text_input_ids.numel() == untruncated_ids.numel()
|
132 |
+
and not torch.equal(text_input_ids, untruncated_ids)
|
133 |
+
):
|
134 |
+
removed_text = self.tokenizer.batch_decode(
|
135 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1])
|
136 |
+
logger.warning(
|
137 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
138 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
139 |
+
)
|
140 |
+
|
141 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
142 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
143 |
+
else:
|
144 |
+
attention_mask = None
|
145 |
+
|
146 |
+
text_embeddings = self.text_encoder(
|
147 |
+
text_input_ids.to(device), attention_mask=attention_mask)
|
148 |
+
text_embeddings = text_embeddings[0]
|
149 |
+
|
150 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
151 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
152 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
153 |
+
text_embeddings = text_embeddings.view(
|
154 |
+
bs_embed * num_images_per_prompt, seq_len, -1)
|
155 |
+
|
156 |
+
# get unconditional embeddings for classifier free guidance
|
157 |
+
if do_classifier_free_guidance:
|
158 |
+
uncond_tokens: List[str]
|
159 |
+
if negative_prompt is None:
|
160 |
+
uncond_tokens = [""] * batch_size
|
161 |
+
elif type(prompt) is not type(negative_prompt):
|
162 |
+
raise TypeError(
|
163 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
164 |
+
f" {type(prompt)}."
|
165 |
+
)
|
166 |
+
elif isinstance(negative_prompt, str):
|
167 |
+
uncond_tokens = [negative_prompt]
|
168 |
+
elif batch_size != len(negative_prompt):
|
169 |
+
raise ValueError(
|
170 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
171 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
172 |
+
" the batch size of `prompt`."
|
173 |
+
)
|
174 |
+
else:
|
175 |
+
uncond_tokens = negative_prompt
|
176 |
+
|
177 |
+
max_length = text_input_ids.shape[-1]
|
178 |
+
uncond_input = self.tokenizer(
|
179 |
+
uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np",
|
180 |
+
)
|
181 |
+
|
182 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
183 |
+
attention_mask = torch.from_numpy(
|
184 |
+
uncond_input.attention_mask).to(device)
|
185 |
+
else:
|
186 |
+
attention_mask = None
|
187 |
+
|
188 |
+
uncond_embeddings = self.text_encoder(
|
189 |
+
torch.from_numpy(uncond_input.input_ids).to(device), attention_mask=attention_mask,
|
190 |
+
)
|
191 |
+
uncond_embeddings = uncond_embeddings[0]
|
192 |
+
|
193 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
194 |
+
seq_len = uncond_embeddings.shape[1]
|
195 |
+
uncond_embeddings = uncond_embeddings.repeat(
|
196 |
+
1, num_images_per_prompt, 1)
|
197 |
+
uncond_embeddings = uncond_embeddings.view(
|
198 |
+
batch_size * num_images_per_prompt, seq_len, -1)
|
199 |
+
|
200 |
+
# For classifier free guidance, we need to do two forward passes.
|
201 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
202 |
+
# to avoid doing two forward passes
|
203 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
204 |
+
|
205 |
+
return text_embeddings
|
206 |
+
|
207 |
+
def _encode_promptv2(
|
208 |
+
self,
|
209 |
+
prompt,
|
210 |
+
device,
|
211 |
+
num_images_per_prompt,
|
212 |
+
do_classifier_free_guidance,
|
213 |
+
negative_prompt=None,
|
214 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
215 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
216 |
+
):
|
217 |
+
|
218 |
+
if prompt is not None and isinstance(prompt, str):
|
219 |
+
batch_size = 1
|
220 |
+
elif prompt is not None and isinstance(prompt, list):
|
221 |
+
batch_size = len(prompt)
|
222 |
+
else:
|
223 |
+
batch_size = prompt_embeds.shape[0]
|
224 |
+
|
225 |
+
if prompt_embeds is None:
|
226 |
+
text_inputs = self.tokenizer(
|
227 |
+
prompt,
|
228 |
+
padding="max_length",
|
229 |
+
max_length=self.tokenizer.model_max_length,
|
230 |
+
truncation=True,
|
231 |
+
return_tensors="pt",
|
232 |
+
)
|
233 |
+
text_input_ids = text_inputs.input_ids
|
234 |
+
untruncated_ids = self.tokenizer(
|
235 |
+
prompt, padding="longest", return_tensors="pt").input_ids
|
236 |
+
|
237 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
238 |
+
text_input_ids, untruncated_ids
|
239 |
+
):
|
240 |
+
removed_text = self.tokenizer.batch_decode(
|
241 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
|
242 |
+
)
|
243 |
+
|
244 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
245 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
246 |
+
else:
|
247 |
+
attention_mask = None
|
248 |
+
|
249 |
+
prompt_embeds = self.text_encoder(
|
250 |
+
text_input_ids.to(device),
|
251 |
+
attention_mask=attention_mask,
|
252 |
+
)
|
253 |
+
prompt_embeds = prompt_embeds[0]
|
254 |
+
|
255 |
+
prompt_embeds = prompt_embeds.to(
|
256 |
+
dtype=self.text_encoder.dtype, device=device)
|
257 |
+
|
258 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
259 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
260 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
261 |
+
prompt_embeds = prompt_embeds.view(
|
262 |
+
bs_embed * num_images_per_prompt, seq_len, -1)
|
263 |
+
|
264 |
+
# get unconditional embeddings for classifier free guidance
|
265 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
266 |
+
uncond_tokens: List[str]
|
267 |
+
if negative_prompt is None:
|
268 |
+
uncond_tokens = [""] * batch_size
|
269 |
+
elif type(prompt) is not type(negative_prompt):
|
270 |
+
raise TypeError(
|
271 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
272 |
+
f" {type(prompt)}."
|
273 |
+
)
|
274 |
+
elif isinstance(negative_prompt, str):
|
275 |
+
uncond_tokens = [negative_prompt]
|
276 |
+
elif batch_size != len(negative_prompt):
|
277 |
+
raise ValueError(
|
278 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
279 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
280 |
+
" the batch size of `prompt`."
|
281 |
+
)
|
282 |
+
else:
|
283 |
+
uncond_tokens = negative_prompt
|
284 |
+
|
285 |
+
max_length = prompt_embeds.shape[1]
|
286 |
+
uncond_input = self.tokenizer(
|
287 |
+
uncond_tokens,
|
288 |
+
padding="max_length",
|
289 |
+
max_length=max_length,
|
290 |
+
truncation=True,
|
291 |
+
return_tensors="pt",
|
292 |
+
)
|
293 |
+
|
294 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
295 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
296 |
+
else:
|
297 |
+
attention_mask = None
|
298 |
+
|
299 |
+
negative_prompt_embeds = self.text_encoder(
|
300 |
+
uncond_input.input_ids.to(device),
|
301 |
+
attention_mask=attention_mask,
|
302 |
+
)
|
303 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
304 |
+
|
305 |
+
if do_classifier_free_guidance:
|
306 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
307 |
+
seq_len = negative_prompt_embeds.shape[1]
|
308 |
+
|
309 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
310 |
+
dtype=self.text_encoder.dtype, device=device)
|
311 |
+
|
312 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
313 |
+
1, num_images_per_prompt, 1)
|
314 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
315 |
+
batch_size * num_images_per_prompt, seq_len, -1)
|
316 |
+
|
317 |
+
negative_prompt_embeds, prompt_embeds = self.compel.pad_conditioning_tensors_to_same_length(
|
318 |
+
[negative_prompt_embeds, prompt_embeds])
|
319 |
+
# For classifier free guidance, we need to do two forward passes.
|
320 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
321 |
+
# to avoid doing two forward passes
|
322 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
323 |
+
|
324 |
+
return prompt_embeds
|
325 |
+
|
326 |
+
def _pyramid_noise_like(self, noise, device, seed, iterations=6, discount=0.4):
|
327 |
+
gen = torch.manual_seed(seed)
|
328 |
+
# EDIT: w and h get over-written, rename for a different variant!
|
329 |
+
b, c, w, h = noise.shape
|
330 |
+
u = torch.nn.Upsample(size=(w, h), mode="bilinear").to(device)
|
331 |
+
for i in range(iterations):
|
332 |
+
r = random.random() * 2 + 2 # Rather than always going 2x,
|
333 |
+
wn, hn = max(1, int(w / (r**i))), max(1, int(h / (r**i)))
|
334 |
+
noise += u(torch.randn(b, c, wn, hn,
|
335 |
+
generator=gen).to(device)) * discount**i
|
336 |
+
if wn == 1 or hn == 1:
|
337 |
+
break # Lowest resolution is 1x1
|
338 |
+
return noise / noise.std() # Scaled back to roughly unit variance
|
339 |
+
|
340 |
+
@torch.no_grad()
|
341 |
+
def inferV4(
|
342 |
+
self,
|
343 |
+
prompt: Union[str, List[str]],
|
344 |
+
height: Optional[int] = None,
|
345 |
+
width: Optional[int] = None,
|
346 |
+
num_inference_steps: int = 50,
|
347 |
+
guidance_scale: float = 7.5,
|
348 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
349 |
+
num_images_per_prompt: Optional[int] = 1,
|
350 |
+
eta: float = 0.0,
|
351 |
+
generator: Optional[torch.Generator] = None,
|
352 |
+
latents: Optional[torch.FloatTensor] = None,
|
353 |
+
output_type: Optional[str] = "pil",
|
354 |
+
return_dict: bool = True,
|
355 |
+
callback: Optional[Callable[[
|
356 |
+
int, int, torch.FloatTensor], None]] = None,
|
357 |
+
callback_steps: Optional[int] = 1,
|
358 |
+
compile_unet: bool = True,
|
359 |
+
compile_vae: bool = True,
|
360 |
+
compile_tenc: bool = True,
|
361 |
+
max_tokens=0,
|
362 |
+
seed=-1,
|
363 |
+
flags=[],
|
364 |
+
og_prompt=None,
|
365 |
+
og_neg_prompt=None,
|
366 |
+
disc=0.4,
|
367 |
+
iter=6,
|
368 |
+
pyramid=0, # disabled by default unless specified
|
369 |
+
):
|
370 |
+
r"""
|
371 |
+
Function invoked when calling the pipeline for generation.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
prompt (`str` or `List[str]`):
|
375 |
+
The prompt or prompts to guide the image generation.
|
376 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
377 |
+
The height in pixels of the generated image.
|
378 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
379 |
+
The width in pixels of the generated image.
|
380 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
381 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
382 |
+
expense of slower inference.
|
383 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
384 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
385 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
386 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
387 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
388 |
+
usually at the expense of lower image quality.
|
389 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
390 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
391 |
+
if `guidance_scale` is less than `1`).
|
392 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
393 |
+
The number of images to generate per prompt.
|
394 |
+
eta (`float`, *optional*, defaults to 0.0):
|
395 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
396 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
397 |
+
generator (`torch.Generator`, *optional*):
|
398 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
399 |
+
deterministic.
|
400 |
+
latents (`torch.FloatTensor`, *optional*):
|
401 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
402 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
403 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
404 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
405 |
+
The output format of the generate image. Choose between
|
406 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
407 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
408 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
409 |
+
plain tuple.
|
410 |
+
callback (`Callable`, *optional*):
|
411 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
412 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
413 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
414 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
415 |
+
called at every step.
|
416 |
+
|
417 |
+
Returns:
|
418 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
419 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
420 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
421 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
422 |
+
(nsfw) content, according to the `safety_checker`.
|
423 |
+
"""
|
424 |
+
# 0. Default height and width to unet
|
425 |
+
|
426 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
427 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
428 |
+
|
429 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
430 |
+
if negative_prompt == None:
|
431 |
+
negative_prompt = ['']
|
432 |
+
# 2. Define call parameters
|
433 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
434 |
+
device = self._execution_device
|
435 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
436 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
437 |
+
# corresponds to doing no classifier free guidance.
|
438 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
439 |
+
|
440 |
+
# # 3. Encode input prompt
|
441 |
+
|
442 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
443 |
+
timesteps = self.scheduler.timesteps
|
444 |
+
|
445 |
+
# Cache key for flags
|
446 |
+
plain = "plain" in flags
|
447 |
+
flair = None
|
448 |
+
for flag in flags:
|
449 |
+
if "flair" in flag:
|
450 |
+
flair = flag
|
451 |
+
break
|
452 |
+
|
453 |
+
with torch.no_grad():
|
454 |
+
c_time = time.time()
|
455 |
+
user_cond = self.build_scheduled_cond(
|
456 |
+
prompt[0], num_inference_steps, ('pos', og_prompt, seed, plain, flair))
|
457 |
+
c_time = time.time()
|
458 |
+
user_uncond = self.build_scheduled_cond(
|
459 |
+
negative_prompt[0], num_inference_steps, ('neg', negative_prompt[0], 0))
|
460 |
+
|
461 |
+
c = []
|
462 |
+
c.extend(user_cond)
|
463 |
+
uc = []
|
464 |
+
uc.extend(user_uncond)
|
465 |
+
max_token_count = 0
|
466 |
+
|
467 |
+
for cond in uc:
|
468 |
+
if cond.cond.shape[1] > max_token_count:
|
469 |
+
max_token_count = cond.cond.shape[1]
|
470 |
+
for cond in c:
|
471 |
+
if cond.cond.shape[1] > max_token_count:
|
472 |
+
max_token_count = cond.cond.shape[1]
|
473 |
+
|
474 |
+
def pad_tensor(conditionings: List[ScheduledPromptConditioning], max_token_count: int) -> List[ScheduledPromptConditioning]:
|
475 |
+
|
476 |
+
c0_shape = conditionings[0].cond.shape
|
477 |
+
if not all([len(c.cond.shape) == len(c0_shape) for c in conditionings]):
|
478 |
+
raise ValueError(
|
479 |
+
"Conditioning tensors must all have either 2 dimensions (unbatched) or 3 dimensions (batched)")
|
480 |
+
|
481 |
+
if len(c0_shape) == 2:
|
482 |
+
# need to be unsqueezed
|
483 |
+
for c in conditionings:
|
484 |
+
c.cond = c.cond.unsqueeze(0)
|
485 |
+
c0_shape = conditionings[0].cond.shape
|
486 |
+
if len(c0_shape) != 3:
|
487 |
+
raise ValueError(
|
488 |
+
f"All conditioning tensors must have the same number of dimensions (2 or 3)")
|
489 |
+
|
490 |
+
if not all([c.cond.shape[0] == c0_shape[0] and c.cond.shape[2] == c0_shape[2] for c in conditionings]):
|
491 |
+
raise ValueError(
|
492 |
+
f"All conditioning tensors must have the same batch size ({c0_shape[0]}) and number of embeddings per token ({c0_shape[1]}")
|
493 |
+
|
494 |
+
# if necessary, pad shorter tensors out with an emptystring tensor
|
495 |
+
empty_z = torch.cat(
|
496 |
+
[self.compel.build_conditioning_tensor("")] * c0_shape[0])
|
497 |
+
for i, c in enumerate(conditionings):
|
498 |
+
cond = c.cond.to(self.device)
|
499 |
+
while cond.shape[1] < max_token_count:
|
500 |
+
cond = torch.cat([cond, empty_z], dim=1)
|
501 |
+
conditionings[i] = ScheduledPromptConditioning(
|
502 |
+
c.end_at_step, cond)
|
503 |
+
return conditionings
|
504 |
+
|
505 |
+
uc = pad_tensor(uc, max_token_count)
|
506 |
+
c = pad_tensor(c, max_token_count)
|
507 |
+
|
508 |
+
next_uc = uc.pop(0)
|
509 |
+
next_c = c.pop(0)
|
510 |
+
prompt_embeds = None
|
511 |
+
new_embeds = True
|
512 |
+
embed_per_step = []
|
513 |
+
for i in range(len(timesteps)):
|
514 |
+
if i > next_uc.end_at_step:
|
515 |
+
next_uc = uc.pop(0)
|
516 |
+
new_embeds = True
|
517 |
+
if i > next_c.end_at_step:
|
518 |
+
next_c = c.pop(0)
|
519 |
+
new_embeds = True
|
520 |
+
|
521 |
+
if new_embeds:
|
522 |
+
negative_prompt_embeds, prompt_embeds = self.compel.pad_conditioning_tensors_to_same_length([
|
523 |
+
next_uc.cond, next_c.cond])
|
524 |
+
prompt_embeds = torch.cat(
|
525 |
+
[negative_prompt_embeds, prompt_embeds])
|
526 |
+
new_embeds = False
|
527 |
+
|
528 |
+
embed_per_step.append(prompt_embeds)
|
529 |
+
|
530 |
+
# 5. Prepare latent variables
|
531 |
+
num_channels_latents = self.unet.in_channels
|
532 |
+
latents = self.prepare_latents(
|
533 |
+
batch_size * num_images_per_prompt,
|
534 |
+
num_channels_latents,
|
535 |
+
height,
|
536 |
+
width,
|
537 |
+
prompt_embeds.dtype,
|
538 |
+
device,
|
539 |
+
generator,
|
540 |
+
latents,
|
541 |
+
)
|
542 |
+
|
543 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
544 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
545 |
+
|
546 |
+
# 7. Denoising loop
|
547 |
+
num_warmup_steps = len(timesteps) - \
|
548 |
+
num_inference_steps * self.scheduler.order
|
549 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
550 |
+
for i, t in enumerate(timesteps):
|
551 |
+
# expand the latents if we are doing classifier free guidance
|
552 |
+
latent_model_input = torch.cat(
|
553 |
+
[latents] * 2) if do_classifier_free_guidance else latents
|
554 |
+
latent_model_input = self.scheduler.scale_model_input(
|
555 |
+
latent_model_input, t)
|
556 |
+
|
557 |
+
prompt_embeds = embed_per_step[i]
|
558 |
+
# predict the noise residual
|
559 |
+
|
560 |
+
noise_pred = self.unet(
|
561 |
+
latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
|
562 |
+
|
563 |
+
# perform guidance
|
564 |
+
if do_classifier_free_guidance:
|
565 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
566 |
+
noise_pred = noise_pred_uncond + guidance_scale * \
|
567 |
+
(noise_pred_text - noise_pred_uncond)
|
568 |
+
|
569 |
+
if (i < pyramid*num_inference_steps):
|
570 |
+
noise_pred = self._pyramid_noise_like(
|
571 |
+
noise_pred, device, seed, iterations=iter, discount=disc)
|
572 |
+
|
573 |
+
# compute the previous noisy sample x_t -> x_t-1
|
574 |
+
latents = self.scheduler.step(
|
575 |
+
noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
576 |
+
|
577 |
+
# call the callback, if provided
|
578 |
+
if (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0:
|
579 |
+
progress_bar.update()
|
580 |
+
if callback is not None and i % callback_steps == 0:
|
581 |
+
callback(i, t, latents)
|
582 |
+
|
583 |
+
if not output_type == "latent":
|
584 |
+
image = self.vae.decode(
|
585 |
+
latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
586 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
587 |
+
image, device, prompt_embeds.dtype)
|
588 |
+
else:
|
589 |
+
image = latents
|
590 |
+
has_nsfw_concept = None
|
591 |
+
|
592 |
+
if has_nsfw_concept is None:
|
593 |
+
do_denormalize = [True] * image.shape[0]
|
594 |
+
else:
|
595 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
596 |
+
|
597 |
+
image = self.image_processor.postprocess(
|
598 |
+
image, output_type=output_type, do_denormalize=do_denormalize)
|
599 |
+
|
600 |
+
# Offload last model to CPU
|
601 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
602 |
+
self.final_offload_hook.offload()
|
603 |
+
|
604 |
+
if not return_dict:
|
605 |
+
return (image, has_nsfw_concept)
|
606 |
+
|
607 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
608 |
+
|
609 |
+
@torch.no_grad()
|
610 |
+
def inferPipe(
|
611 |
+
self,
|
612 |
+
prompt: Union[str, List[str]] = None,
|
613 |
+
height: Optional[int] = None,
|
614 |
+
width: Optional[int] = None,
|
615 |
+
num_inference_steps: int = 50,
|
616 |
+
guidance_scale: float = 7.5,
|
617 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
618 |
+
num_images_per_prompt: Optional[int] = 1,
|
619 |
+
eta: float = 0.0,
|
620 |
+
generator: Optional[Union[torch.Generator,
|
621 |
+
List[torch.Generator]]] = None,
|
622 |
+
latents: Optional[torch.FloatTensor] = None,
|
623 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
624 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
625 |
+
output_type: Optional[str] = "pil",
|
626 |
+
return_dict: bool = True,
|
627 |
+
callback: Optional[Callable[[
|
628 |
+
int, int, torch.FloatTensor], None]] = None,
|
629 |
+
callback_steps: int = 1,
|
630 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
631 |
+
):
|
632 |
+
r"""
|
633 |
+
Function invoked when calling the pipeline for generation.
|
634 |
+
|
635 |
+
Args:
|
636 |
+
prompt (`str` or `List[str]`, *optional*):
|
637 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
638 |
+
instead.
|
639 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
640 |
+
The height in pixels of the generated image.
|
641 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
642 |
+
The width in pixels of the generated image.
|
643 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
644 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
645 |
+
expense of slower inference.
|
646 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
647 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
648 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
649 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
650 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
651 |
+
usually at the expense of lower image quality.
|
652 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
653 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
654 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
655 |
+
less than `1`).
|
656 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
657 |
+
The number of images to generate per prompt.
|
658 |
+
eta (`float`, *optional*, defaults to 0.0):
|
659 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
660 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
661 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
662 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
663 |
+
to make generation deterministic.
|
664 |
+
latents (`torch.FloatTensor`, *optional*):
|
665 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
666 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
667 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
668 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
669 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
670 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
671 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
672 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
673 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
674 |
+
argument.
|
675 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
676 |
+
The output format of the generate image. Choose between
|
677 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
678 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
679 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
680 |
+
plain tuple.
|
681 |
+
callback (`Callable`, *optional*):
|
682 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
683 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
684 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
685 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
686 |
+
called at every step.
|
687 |
+
cross_attention_kwargs (`dict`, *optional*):
|
688 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
689 |
+
`self.processor` in
|
690 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
691 |
+
|
692 |
+
Examples:
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
696 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
697 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
698 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
699 |
+
(nsfw) content, according to the `safety_checker`.
|
700 |
+
"""
|
701 |
+
# 0. Default height and width to unet
|
702 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
703 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
704 |
+
|
705 |
+
# 1. Check inputs. Raise error if not correct
|
706 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
707 |
+
|
708 |
+
# 2. Define call parameters
|
709 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
710 |
+
device = self._execution_device
|
711 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
712 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
713 |
+
# corresponds to doing no classifier free guidance.
|
714 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
715 |
+
|
716 |
+
# 3. Encode input prompt
|
717 |
+
text_embeddings = self._encode_prompt(
|
718 |
+
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
719 |
+
)
|
720 |
+
|
721 |
+
# 4. Prepare timesteps
|
722 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
723 |
+
timesteps = self.scheduler.timesteps
|
724 |
+
|
725 |
+
# 5. Prepare latent variables
|
726 |
+
num_channels_latents = self.unet.in_channels
|
727 |
+
latents = self.prepare_latents(
|
728 |
+
batch_size * num_images_per_prompt,
|
729 |
+
num_channels_latents,
|
730 |
+
height,
|
731 |
+
width,
|
732 |
+
text_embeddings.dtype,
|
733 |
+
device,
|
734 |
+
generator,
|
735 |
+
latents,
|
736 |
+
)
|
737 |
+
|
738 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
739 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
740 |
+
|
741 |
+
# 7. Denoising loop
|
742 |
+
num_warmup_steps = len(timesteps) - \
|
743 |
+
num_inference_steps * self.scheduler.order
|
744 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
745 |
+
for i, t in enumerate(timesteps):
|
746 |
+
# expand the latents if we are doing classifier free guidance
|
747 |
+
latent_model_input = torch.cat(
|
748 |
+
[latents] * 2) if do_classifier_free_guidance else latents
|
749 |
+
latent_model_input = self.scheduler.scale_model_input(
|
750 |
+
latent_model_input, t)
|
751 |
+
|
752 |
+
noise_pred = self.unet(
|
753 |
+
latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
754 |
+
|
755 |
+
# perform guidance
|
756 |
+
if do_classifier_free_guidance:
|
757 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
758 |
+
noise_pred = noise_pred_uncond + guidance_scale * \
|
759 |
+
(noise_pred_text - noise_pred_uncond)
|
760 |
+
|
761 |
+
# compute the previous noisy sample x_t -> x_t-1
|
762 |
+
latents = self.scheduler.step(
|
763 |
+
noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
764 |
+
|
765 |
+
# call the callback, if provided
|
766 |
+
if (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0:
|
767 |
+
progress_bar.update()
|
768 |
+
if callback is not None and i % callback_steps == 0:
|
769 |
+
callback(i, t, latents)
|
770 |
+
|
771 |
+
if not output_type == "latent":
|
772 |
+
image = self.vae.decode(
|
773 |
+
latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
774 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
775 |
+
image, device, text_embeddings.dtype)
|
776 |
+
else:
|
777 |
+
image = latents
|
778 |
+
has_nsfw_concept = None
|
779 |
+
|
780 |
+
if has_nsfw_concept is None:
|
781 |
+
do_denormalize = [True] * image.shape[0]
|
782 |
+
else:
|
783 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
784 |
+
|
785 |
+
image = self.image_processor.postprocess(
|
786 |
+
image, output_type=output_type, do_denormalize=do_denormalize)
|
787 |
+
|
788 |
+
# Offload last model to CPU
|
789 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
790 |
+
self.final_offload_hook.offload()
|
791 |
+
|
792 |
+
if not return_dict:
|
793 |
+
return (image, has_nsfw_concept)
|
794 |
+
|
795 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|