{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f49e3963d20>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674147738255601879, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKDlPT9MMAO/Z6dOP8JAvz4/jYI/o8GGP7vKYT90LZm/p4XLP50boTkf4hk/hIMovytngT9a13o/IEXSPrfPGz8MaAFAuFvTP9GJDD+v5+w8eHH/vkiuEb8rz1o/MC9Bv9fpSr+ixjA/cUiZPlfHJj+aqH0+OY7APmgbSD78W3O8qiZZPVHRJsAfzCY9cg7xPquXU76E7zK+91uCvmuQdj5dBpC+udQSwK69Fr/zGDm7LOeYPiRguL5U2dG+wxzEv7cf0b58+bY/VoExv8QErD7X6Uq/V125v3FImT7YecS/cxTavZiLTz+3i9G+5hP5Pi6s9D6ztFE/7PdAvTog6r6rqcs/jJwcvCDHIz8Exkk/xakPv4QK4T5DJFI7wOx/vu4fhD5YINY9m9gMP20n6zySj7I/u+hevx86hz87INc+1+lKv6LGMD9xSJk+V8cmP7JU3D4D51s/oKgAv/84ez5KJm0/rjdwP/9PAT9M892+E9eLP2uQpL9Axog/72BsPAdavz64OYI+W96vvsfqB72JUac+4Z5YvySsDD81hdI8wSMMP2f3p7+3J1g/rWwYvtfpSr+ixjA/cUiZPlfHJj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABBKZ42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAz6nKvAAAAAC4V+2/AAAAAP6i7D0AAAAATm/3PwAAAAAxlVO9AAAAAMOz2j8AAAAAdsLwvQAAAADXuv2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAENyStgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBBYED4AAAAAWYb/vwAAAADNK+u7AAAAAAmQAEAAAAAA+DHUvQAAAADA6vc/AAAAAMF6cr0AAAAARhH6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIOizYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDC5si9AAAAANrF7r8AAAAAckOhPQAAAABJaOE/AAAAADlsA74AAAAAeHUAQAAAAABevwy+AAAAAHK37L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVSvMzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaBL8vQAAAACPMuG/AAAAAOlzCL4AAAAAyBQAQAAAAACKAK09AAAAAF227j8AAAAALhqhPQAAAAD0kO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ81Zi7TUiKMAWyUTegDjAF0lEdApxK3Rw6ySnV9lChoBkdAnoMxmseXA2gHTegDaAhHQKcTJVwPy091fZQoaAZHQJ8/ZISUTtdoB03oA2gIR0CnGWi/47A+dX2UKGgGR0Cgq5D1GsmwaAdN6ANoCEdApxvxSrHU+nV9lChoBkdAnARy2lVLjGgHTegDaAhHQKcezb4agmJ1fZQoaAZHQKCCaRbr1NBoB03oA2gIR0CnHz3e3x4IdX2UKGgGR0CgBorKmsNlaAdN6ANoCEdApyWAYxcmjXV9lChoBkdAnw4moR7JGWgHTegDaAhHQKcoDcNYr8R1fZQoaAZHQJ8MhoexOcloB03oA2gIR0CnKvfUWl/IdX2UKGgGR0B/jDTTfBN3aAdN6ANoCEdApytnwI+nqHV9lChoBkdAnTIjLKV6eGgHTegDaAhHQKcx1aRISUV1fZQoaAZHQJ6Zk6jnFHdoB03oA2gIR0CnNFfxMFlkdX2UKGgGR0CdVItNzr/saAdN6ANoCEdApzeLB42S+3V9lChoBkdAno161PWQOmgHTegDaAhHQKc4KoKlYU51fZQoaAZHQJ4tuKBNEgJoB03oA2gIR0CnQUpgLJCCdX2UKGgGR0CZLGqkdmxuaAdN6ANoCEdAp0PHdsSCe3V9lChoBkdAmvh9OqNp/WgHTegDaAhHQKdGtub7TDx1fZQoaAZHQJlClgmZ3LVoB03oA2gIR0CnRzTqjaf0dX2UKGgGR0CbhO1uzhP1aAdN6ANoCEdAp02D4DcM3XV9lChoBkdAnNj4nSfDk2gHTegDaAhHQKdP/fJFLFp1fZQoaAZHQJohYVh1DBxoB03oA2gIR0CnUt4oZydXdX2UKGgGR0CajkP+XJHRaAdN6ANoCEdAp1NMhLXcxnV9lChoBkdAnLhQ+QlrumgHTegDaAhHQKdZjWT5ftx1fZQoaAZHQJmrDZ7HAARoB03oA2gIR0CnXB9Jz1brdX2UKGgGR0CSBbr+YMOPaAdN6ANoCEdAp18XFR51NnV9lChoBkdAlwY8ZLqUvGgHTegDaAhHQKdfhqxC6Yp1fZQoaAZHQJyMEp2ECeVoB03oA2gIR0CnZe0yxiXqdX2UKGgGR0Cc8gVNpM6BaAdN6ANoCEdAp2iB1A7gbnV9lChoBkdAmjfH1J17pmgHTegDaAhHQKdrX7cfvF51fZQoaAZHQJwtxW3jMmpoB03oA2gIR0Cna88ABDG+dX2UKGgGR0CUPpRJVbRnaAdN6ANoCEdAp3I6aXrt3XV9lChoBkdAmpPAPqcEvGgHTegDaAhHQKd0xpA2Q4l1fZQoaAZHQJkmqbz9S/FoB03oA2gIR0Cnd6ZavA45dX2UKGgGR0CWf9Q+EAYIaAdN6ANoCEdAp3gepKjBVXV9lChoBkdAnDizlT3qRmgHTegDaAhHQKd+aD6nBLx1fZQoaAZHQJSJRkwvg3toB03oA2gIR0CngPw0XP7fdX2UKGgGR0CBmlROUMXraAdN6ANoCEdAp4PxUzbeuXV9lChoBkdAnoCZgTh5xGgHTegDaAhHQKeEZhKlHjJ1fZQoaAZHQJmlyxTsIE9oB03oA2gIR0CnitQiqyWzdX2UKGgGR0CdOfQQtjCpaAdN6ANoCEdAp455tWMjvHV9lChoBkdAm4VH0PH1e2gHTegDaAhHQKeS1G3nZCh1fZQoaAZHQJozimwaBI5oB03oA2gIR0Cnk3xaxHG0dX2UKGgGR0CdpdlSjxkNaAdN6ANoCEdAp5nn6oESunV9lChoBkdAnRVihakhzWgHTegDaAhHQKecbUsnRb91fZQoaAZHQJoM+wD/2kBoB03oA2gIR0Cnn0prcj7idX2UKGgGR0Cd1BiF0xM4aAdN6ANoCEdAp5+1LHuJDXV9lChoBkdAmqFbL+xW1mgHTegDaAhHQKel24p+c6N1fZQoaAZHQJsO3uw5eZ5oB03oA2gIR0CnqG/giu+zdX2UKGgGR0CcPwsXSBsiaAdN6ANoCEdAp6tPPmganHV9lChoBkdAlAxjOoo/imgHTegDaAhHQKeru/KQq7R1fZQoaAZHQJf3pFjNILBoB03oA2gIR0CnsfWv0RODdX2UKGgGR0CXuEDxLCemaAdN6ANoCEdAp7R49gWrO3V9lChoBkdAmlIs4ku6E2gHTegDaAhHQKe3Z4D9wWF1fZQoaAZHQJZWuloDgZVoB03oA2gIR0Cnt9pjlPrOdX2UKGgGR0CcnlGEf1YhaAdN6ANoCEdAp74biZOSGXV9lChoBkdAkQDEiD/VAmgHTegDaAhHQKfAu9ugpSd1fZQoaAZHQJrR2BjFyaNoB03oA2gIR0Cnw5nLq2SddX2UKGgGR0Cbwd1Vo6CEaAdN6ANoCEdAp8QKasp5NXV9lChoBkdAnWTQmVqveWgHTegDaAhHQKfKa4oZydZ1fZQoaAZHQKCHUo/iYLNoB03oA2gIR0CnzPaRyOrAdX2UKGgGR0CeJCRYRujzaAdN6ANoCEdAp8/VNSIgvHV9lChoBkdAn9JZGz8gp2gHTegDaAhHQKfQTBpHqeN1fZQoaAZHQKAqSSAYpDxoB03oA2gIR0Cn1tOanaWYdX2UKGgGR0CgVDgW8AaOaAdN6ANoCEdAp9lbJIUah3V9lChoBkdAnVkxkmQbM2gHTegDaAhHQKfcPr9l2/11fZQoaAZHQKDqX8Q7LdNoB03oA2gIR0Cn3K6ScLBsdX2UKGgGR0CcpbVPepGXaAdN6ANoCEdAp+MAKv3ajHV9lChoBkdAoAAqWVu76GgHTegDaAhHQKfljkBCD291fZQoaAZHQJu+HKA8SwpoB03oA2gIR0Cn6H+l0o0AdX2UKGgGR0CeQk7IkqtpaAdN6ANoCEdAp+jscABDHHV9lChoBkdAnkztoFmnO2gHTegDaAhHQKfvSkFfReF1fZQoaAZHQJw1fgAIY3xoB03oA2gIR0Cn8dQCCBf8dX2UKGgGR0CZoONKAavSaAdN6ANoCEdAp/Suc8TzunV9lChoBkdAnORzx5LRKGgHTegDaAhHQKf1HJZntfJ1fZQoaAZHQJi4q51/2CdoB03oA2gIR0Cn+2H3Dej3dX2UKGgGR0CdeRGGEf1ZaAdN6ANoCEdAp/4KFZgXuXV9lChoBkdAngMvozN2T2gHTegDaAhHQKgA9VfeDWd1fZQoaAZHQJxtRRWLgoBoB03oA2gIR0CoAWODrZ8KdX2UKGgGR0Cdkp32VVxTaAdN6ANoCEdAqAfD9l2/z3V9lChoBkdAmpfA3cYZVGgHTegDaAhHQKgKRJz1bq11fZQoaAZHQJbffsqril1oB03oA2gIR0CoDSmpda+wdX2UKGgGR0CYpRI2OyVwaAdN6ANoCEdAqA2YLRa5gHV9lChoBkdAmCCmjwhGIGgHTegDaAhHQKgT/G6PKdR1fZQoaAZHQJnfFqpLmIVoB03oA2gIR0CoFoz7/GVBdX2UKGgGR0CX7wyo4uK5aAdN6ANoCEdAqBlx8fFJhHV9lChoBkdAmLlpW7voeWgHTegDaAhHQKgZ3z1bqyJ1fZQoaAZHQJ0i0RVZLZloB03oA2gIR0CoIBywwCbMdX2UKGgGR0CXTo7fpD/maAdN6ANoCEdAqCKdeY2KmHV9lChoBkdAluH2vB7/oGgHTegDaAhHQKgld3PAwf11fZQoaAZHQJrhwMYuTRpoB03oA2gIR0CoJfSEcsDodX2UKGgGR0CX6nWHDaXbaAdN6ANoCEdAqCxMKmbb13V9lChoBkdAl8Q4jfNzKmgHTegDaAhHQKgu6lTFVDN1fZQoaAZHQJjquRmseXBoB03oA2gIR0CoMdLwWnCPdX2UKGgGR0CZqq4tHxz8aAdN6ANoCEdAqDI/rKNhmXV9lChoBkdAmc6KUA1ejWgHTegDaAhHQKg4ktT1kDp1fZQoaAZHQJXI4MrmQsBoB03oA2gIR0CoOzveYUnHdX2UKGgGR0CYCRRF7UobaAdN6ANoCEdAqD4uI2wV03V9lChoBkdAloA9t2s7uGgHTegDaAhHQKg+nGkvboN1fZQoaAZHQJfDt3Qla8poB03oA2gIR0CoRQ3XiBGydX2UKGgGR0CWQXvl2eQNaAdN6ANoCEdAqEeakXUH6nVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}