File size: 2,304 Bytes
e1f6da6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# Joint NT-ESM2 DNA-Protein Models
This repository contains jointly trained Nucleotide Transformer (NT) and ESM2 models for DNA-protein sequence analysis.
## Model Components
### DNA Model (`dna/`)
- **Type**: Nucleotide Transformer for DNA sequences
- **Context**: 4096 tokens
- **Training**: Transcript-specific coding sequences
### Protein Model (`protein/`)
- **Type**: ESM2 for protein sequences
- **Variant**: Large model
- **Training**: Corresponding protein sequences
## Usage
```python
from transformers import AutoModel, AutoTokenizer
# Load DNA model
dna_model = AutoModel.from_pretrained("vsubasri/joint-nt-esm2-transcript-coding", subfolder="dna")
dna_tokenizer = AutoTokenizer.from_pretrained("vsubasri/joint-nt-esm2-transcript-coding", subfolder="dna")
# Load protein model
protein_model = AutoModel.from_pretrained("vsubasri/joint-nt-esm2-transcript-coding", subfolder="protein")
protein_tokenizer = AutoTokenizer.from_pretrained("vsubasri/joint-nt-esm2-transcript-coding", subfolder="protein")
# Example joint usage
dna_seq = "ATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGA"
protein_seq = "MKRISLHHHHHHHQVTVRWD"
dna_inputs = dna_tokenizer(dna_seq, return_tensors="pt")
protein_inputs = protein_tokenizer(protein_seq, return_tensors="pt")
dna_outputs = dna_model(**dna_inputs)
protein_outputs = protein_model(**protein_inputs)
```
## Training Details
- **Joint Training**: Models trained together for cross-modal understanding
- **Batch Size**: 8
- **Data**: Transcript-specific coding sequences with corresponding proteins
- **Architecture**: Maintained original NT and ESM2 architectures
## Repository Structure
```
βββ dna/ # NT DNA model
β βββ config.json
β βββ model.safetensors
β βββ tokenizer_config.json
β βββ vocab.txt
β βββ special_tokens_map.json
βββ protein/ # ESM2 protein model
β βββ config.json
β βββ model.safetensors
β βββ tokenizer_config.json
β βββ vocab.txt
β βββ special_tokens_map.json
βββ joint_config.json # Joint model configuration
```
## Citation
If you use these models, please cite the original NT and ESM2 papers along with your joint training methodology.
|