File size: 1,644 Bytes
89b72b6
 
 
 
 
 
6ea196c
 
89b72b6
 
 
 
 
 
 
 
 
 
 
6ea196c
8d45fe7
 
 
 
 
89b72b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d45fe7
 
89b72b6
 
 
 
 
6ea196c
 
 
 
8d45fe7
 
6ea196c
 
89b72b6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: Falconsai/text_summarization
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: text_summarization-cnn
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text_summarization-cnn

This model is a fine-tuned version of [Falconsai/text_summarization](https://huggingface.co/Falconsai/text_summarization) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6120
- Rouge1: 0.2483
- Rouge2: 0.1203
- Rougel: 0.2055
- Rougelsum: 0.2344

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
| 1.8062        | 1.0   | 32691 | 1.6262          | 0.248  | 0.1198 | 0.2053 | 0.234     |
| 1.7563        | 2.0   | 65382 | 1.6120          | 0.2483 | 0.1203 | 0.2055 | 0.2344    |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2