|
import os
|
|
import time
|
|
import faiss
|
|
import random
|
|
import torch
|
|
|
|
from colbert.utils.runs import Run
|
|
from multiprocessing import Pool
|
|
from colbert.modeling.inference import ModelInference
|
|
from colbert.evaluation.ranking_logger import RankingLogger
|
|
|
|
from colbert.utils.utils import print_message, batch
|
|
from colbert.ranking.faiss_index import FaissIndex
|
|
|
|
|
|
def batch_retrieve(args):
|
|
assert args.retrieve_only, "TODO: Combine batch (multi-query) retrieval with batch re-ranking"
|
|
|
|
faiss_index = FaissIndex(args.index_path, args.faiss_index_path, args.nprobe, args.part_range)
|
|
inference = ModelInference(args.colbert, amp=args.amp)
|
|
|
|
ranking_logger = RankingLogger(Run.path, qrels=None)
|
|
|
|
with ranking_logger.context('unordered.tsv', also_save_annotations=False) as rlogger:
|
|
queries = args.queries
|
|
qids_in_order = list(queries.keys())
|
|
|
|
for qoffset, qbatch in batch(qids_in_order, 100_000, provide_offset=True):
|
|
qbatch_text = [queries[qid] for qid in qbatch]
|
|
|
|
print_message(f"#> Embedding {len(qbatch_text)} queries in parallel...")
|
|
Q = inference.queryFromText(qbatch_text, bsize=512)
|
|
|
|
print_message("#> Starting batch retrieval...")
|
|
all_pids = faiss_index.retrieve(args.faiss_depth, Q, verbose=True)
|
|
|
|
|
|
for query_idx, (qid, ranking) in enumerate(zip(qbatch, all_pids)):
|
|
query_idx = qoffset + query_idx
|
|
|
|
if query_idx % 1000 == 0:
|
|
print_message(f"#> Logging query #{query_idx} (qid {qid}) now...")
|
|
|
|
ranking = [(None, pid, None) for pid in ranking]
|
|
rlogger.log(qid, ranking, is_ranked=False)
|
|
|
|
print('\n\n')
|
|
print(ranking_logger.filename)
|
|
print("#> Done.")
|
|
print('\n\n')
|
|
|