File size: 5,270 Bytes
828992f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import time
import torch
import queue
import threading

from collections import defaultdict

from colbert.utils.runs import Run
from colbert.modeling.inference import ModelInference
from colbert.evaluation.ranking_logger import RankingLogger

from colbert.utils.utils import print_message, flatten, zipstar
from colbert.indexing.loaders import get_parts
from colbert.ranking.index_part import IndexPart

MAX_DEPTH_LOGGED = 1000  # TODO: Use args.depth


def prepare_ranges(index_path, dim, step, part_range):
    print_message("#> Launching a separate thread to load index parts asynchronously.")
    parts, _, _ = get_parts(index_path)

    positions = [(offset, offset + step) for offset in range(0, len(parts), step)]

    if part_range is not None:
        positions = positions[part_range.start: part_range.stop]

    loaded_parts = queue.Queue(maxsize=2)

    def _loader_thread(index_path, dim, positions):
        for offset, endpos in positions:
            index = IndexPart(index_path, dim=dim, part_range=range(offset, endpos), verbose=True)
            loaded_parts.put(index, block=True)

    thread = threading.Thread(target=_loader_thread, args=(index_path, dim, positions,))
    thread.start()

    return positions, loaded_parts, thread


def score_by_range(positions, loaded_parts, all_query_embeddings, all_query_rankings, all_pids):
    print_message("#> Sorting by PID..")
    all_query_indexes, all_pids = zipstar(all_pids)
    sorting_pids = torch.tensor(all_pids).sort()
    all_query_indexes, all_pids = torch.tensor(all_query_indexes)[sorting_pids.indices], sorting_pids.values

    range_start, range_end = 0, 0

    for offset, endpos in positions:
        print_message(f"#> Fetching parts {offset}--{endpos} from queue..")
        index = loaded_parts.get()

        print_message(f"#> Filtering PIDs to the range {index.pids_range}..")
        range_start = range_start + (all_pids[range_start:] < index.pids_range.start).sum()
        range_end = range_end + (all_pids[range_end:] < index.pids_range.stop).sum()

        pids = all_pids[range_start:range_end]
        query_indexes = all_query_indexes[range_start:range_end]

        print_message(f"#> Got {len(pids)} query--passage pairs in this range.")

        if len(pids) == 0:
            continue

        print_message(f"#> Ranking in batches the pairs #{range_start} through #{range_end}...")
        scores = index.batch_rank(all_query_embeddings, query_indexes, pids, sorted_pids=True)

        for query_index, pid, score in zip(query_indexes.tolist(), pids.tolist(), scores):
            all_query_rankings[0][query_index].append(pid)
            all_query_rankings[1][query_index].append(score)


def batch_rerank(args):
    positions, loaded_parts, thread = prepare_ranges(args.index_path, args.dim, args.step, args.part_range)

    inference = ModelInference(args.colbert, amp=args.amp)
    queries, topK_pids = args.queries, args.topK_pids

    with torch.no_grad():
        queries_in_order = list(queries.values())

        print_message(f"#> Encoding all {len(queries_in_order)} queries in batches...")

        all_query_embeddings = inference.queryFromText(queries_in_order, bsize=512, to_cpu=True)
        all_query_embeddings = all_query_embeddings.to(dtype=torch.float16).permute(0, 2, 1).contiguous()

    for qid in queries:
        """

        Since topK_pids is a defaultdict, make sure each qid *has* actual PID information (even if empty).

        """
        assert qid in topK_pids, qid

    all_pids = flatten([[(query_index, pid) for pid in topK_pids[qid]] for query_index, qid in enumerate(queries)])
    all_query_rankings = [defaultdict(list), defaultdict(list)]

    print_message(f"#> Will process {len(all_pids)} query--document pairs in total.")

    with torch.no_grad():
        score_by_range(positions, loaded_parts, all_query_embeddings, all_query_rankings, all_pids)

    ranking_logger = RankingLogger(Run.path, qrels=None, log_scores=args.log_scores)

    with ranking_logger.context('ranking.tsv', also_save_annotations=False) as rlogger:
        with torch.no_grad():
            for query_index, qid in enumerate(queries):
                if query_index % 1000 == 0:
                    print_message("#> Logging query #{} (qid {}) now...".format(query_index, qid))

                pids = all_query_rankings[0][query_index]
                scores = all_query_rankings[1][query_index]

                K = min(MAX_DEPTH_LOGGED, len(scores))

                if K == 0:
                    continue

                scores_topk = torch.tensor(scores).topk(K, largest=True, sorted=True)

                pids, scores = torch.tensor(pids)[scores_topk.indices].tolist(), scores_topk.values.tolist()

                ranking = [(score, pid, None) for pid, score in zip(pids, scores)]
                assert len(ranking) <= MAX_DEPTH_LOGGED, (len(ranking), MAX_DEPTH_LOGGED)

                rlogger.log(qid, ranking, is_ranked=True, print_positions=[1, 2] if query_index % 100 == 0 else [])

    print('\n\n')
    print(ranking_logger.filename)
    print_message('#> Done.\n')

    thread.join()