File size: 3,148 Bytes
38e25f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
base_model: NousResearch/Llama-2-7b-hf
library_name: peft
metrics:
- accuracy
- precision
- recall
- f1
tags:
- generated_from_trainer
model-index:
- name: Ip_test_3000
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Ip_test_3000

This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6617
- Accuracy: 0.6013
- Precision: 0.5938
- Recall: 0.6210
- F1: 0.6071

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 160
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 0.96  | 21   | 1.1577          | 0.504    | 0.0       | 0.0    | 0.0    |
| No log        | 1.96  | 42   | 0.9227          | 0.504    | 0.0       | 0.0    | 0.0    |
| No log        | 2.96  | 63   | 0.6936          | 0.5147   | 0.5108    | 0.5081 | 0.5094 |
| No log        | 3.96  | 84   | 0.6954          | 0.496    | 0.4423    | 0.0618 | 0.1085 |
| No log        | 4.96  | 105  | 0.6898          | 0.56     | 0.5453    | 0.6801 | 0.6053 |
| No log        | 5.96  | 126  | 0.6880          | 0.5653   | 0.5676    | 0.5188 | 0.5421 |
| No log        | 6.96  | 147  | 0.6856          | 0.5627   | 0.5780    | 0.4382 | 0.4985 |
| 13.66         | 7.96  | 168  | 0.6873          | 0.5573   | 0.5369    | 0.7823 | 0.6368 |
| 13.66         | 8.96  | 189  | 0.6793          | 0.5893   | 0.5741    | 0.6667 | 0.6169 |
| 13.66         | 9.96  | 210  | 0.6777          | 0.584    | 0.5704    | 0.6532 | 0.6090 |
| 13.66         | 10.96 | 231  | 0.6690          | 0.6133   | 0.5981    | 0.6720 | 0.6329 |
| 13.66         | 11.96 | 252  | 0.6959          | 0.5747   | 0.7087    | 0.2419 | 0.3607 |
| 13.66         | 12.96 | 273  | 0.6691          | 0.6093   | 0.6010    | 0.6317 | 0.6160 |
| 13.66         | 13.96 | 294  | 0.6689          | 0.5987   | 0.5843    | 0.6613 | 0.6204 |
| 10.9484       | 14.96 | 315  | 0.6635          | 0.6      | 0.5984    | 0.5887 | 0.5935 |
| 10.9484       | 15.96 | 336  | 0.6617          | 0.6013   | 0.5938    | 0.6210 | 0.6071 |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.3.1.post300
- Datasets 3.2.0
- Tokenizers 0.21.0