File size: 2,594 Bytes
d4d850f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Crop_Disease_model_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Crop_Disease_model_1
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2482
- Accuracy: 0.7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 18
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 2.974 | 0.9787 | 23 | 2.9288 | 0.1573 |
| 2.8301 | 2.0 | 47 | 2.6713 | 0.5173 |
| 2.3995 | 2.9787 | 70 | 2.3223 | 0.5707 |
| 2.112 | 4.0 | 94 | 2.0321 | 0.604 |
| 1.8965 | 4.9787 | 117 | 1.8377 | 0.6133 |
| 1.6807 | 6.0 | 141 | 1.6895 | 0.6307 |
| 1.4942 | 6.9787 | 164 | 1.5807 | 0.6693 |
| 1.3849 | 8.0 | 188 | 1.5080 | 0.664 |
| 1.2975 | 8.9787 | 211 | 1.4605 | 0.6613 |
| 1.1747 | 10.0 | 235 | 1.3888 | 0.692 |
| 1.1457 | 10.9787 | 258 | 1.3622 | 0.692 |
| 1.0602 | 12.0 | 282 | 1.3318 | 0.6893 |
| 1.0296 | 12.9787 | 305 | 1.2968 | 0.7133 |
| 0.9556 | 14.0 | 329 | 1.2999 | 0.676 |
| 0.9317 | 14.9787 | 352 | 1.2625 | 0.7053 |
| 0.9134 | 16.0 | 376 | 1.2656 | 0.696 |
| 0.914 | 16.9787 | 399 | 1.2593 | 0.7013 |
| 0.9013 | 17.6170 | 414 | 1.2482 | 0.7 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
|