File size: 2,594 Bytes
d4d850f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Crop_Disease_model_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Crop_Disease_model_1

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2482
- Accuracy: 0.7

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 18

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 2.974         | 0.9787  | 23   | 2.9288          | 0.1573   |
| 2.8301        | 2.0     | 47   | 2.6713          | 0.5173   |
| 2.3995        | 2.9787  | 70   | 2.3223          | 0.5707   |
| 2.112         | 4.0     | 94   | 2.0321          | 0.604    |
| 1.8965        | 4.9787  | 117  | 1.8377          | 0.6133   |
| 1.6807        | 6.0     | 141  | 1.6895          | 0.6307   |
| 1.4942        | 6.9787  | 164  | 1.5807          | 0.6693   |
| 1.3849        | 8.0     | 188  | 1.5080          | 0.664    |
| 1.2975        | 8.9787  | 211  | 1.4605          | 0.6613   |
| 1.1747        | 10.0    | 235  | 1.3888          | 0.692    |
| 1.1457        | 10.9787 | 258  | 1.3622          | 0.692    |
| 1.0602        | 12.0    | 282  | 1.3318          | 0.6893   |
| 1.0296        | 12.9787 | 305  | 1.2968          | 0.7133   |
| 0.9556        | 14.0    | 329  | 1.2999          | 0.676    |
| 0.9317        | 14.9787 | 352  | 1.2625          | 0.7053   |
| 0.9134        | 16.0    | 376  | 1.2656          | 0.696    |
| 0.914         | 16.9787 | 399  | 1.2593          | 0.7013   |
| 0.9013        | 17.6170 | 414  | 1.2482          | 0.7      |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1