Commit
·
d62dece
1
Parent(s):
360a8d9
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: token_fine_tunned_flipkart_2_gl
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# token_fine_tunned_flipkart_2_gl
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0275
|
23 |
+
- Precision: 0.9888
|
24 |
+
- Recall: 0.9900
|
25 |
+
- F1: 0.9894
|
26 |
+
- Accuracy: 0.9924
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 8
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 136 | 0.1945 | 0.9023 | 0.9338 | 0.9178 | 0.9331 |
|
58 |
+
| No log | 2.0 | 272 | 0.1232 | 0.9469 | 0.9572 | 0.9520 | 0.9658 |
|
59 |
+
| No log | 3.0 | 408 | 0.0852 | 0.9595 | 0.9688 | 0.9641 | 0.9747 |
|
60 |
+
| 0.2214 | 4.0 | 544 | 0.0603 | 0.9723 | 0.9760 | 0.9741 | 0.9831 |
|
61 |
+
| 0.2214 | 5.0 | 680 | 0.0455 | 0.9770 | 0.9819 | 0.9794 | 0.9865 |
|
62 |
+
| 0.2214 | 6.0 | 816 | 0.0357 | 0.9823 | 0.9863 | 0.9843 | 0.9887 |
|
63 |
+
| 0.2214 | 7.0 | 952 | 0.0307 | 0.9869 | 0.9894 | 0.9882 | 0.9916 |
|
64 |
+
| 0.0938 | 8.0 | 1088 | 0.0275 | 0.9888 | 0.9900 | 0.9894 | 0.9924 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.19.2
|
70 |
+
- Pytorch 1.11.0+cu102
|
71 |
+
- Datasets 2.2.2
|
72 |
+
- Tokenizers 0.12.1
|