File size: 12,646 Bytes
bae8b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: Why is KOF losing share in Cuernavaca Colas MS RET Original?
- text: Are there any whitespaces in terms of flavor for KOF within CSD Sabores?
- text: What is the trend of KOF"s market share in Colas SS in Cuernavaca from 2019
    to YTD 2023?
- text: Which categories have seen the some of the highest Share losses for KOF in
    Cuernavaca in 2022?
- text: Which Category X Pack can we see the major share gain and which parameters
    are driving the share gain in Cuernavaca?
pipeline_tag: text-classification
inference: true
base_model: intfloat/multilingual-e5-large
model-index:
- name: SetFit with intfloat/multilingual-e5-large
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.25
      name: Accuracy
---

# SetFit with intfloat/multilingual-e5-large

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 12 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                            |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | <ul><li>'what are the top brands contributing to share gain for Jumex in Cuernavaca in 2022'</li><li>'Apart from Jugos + Néctares, Which are the top contributing categoriesXconsumo to the share loss for Jumex in Orizaba in 2021?'</li><li>'what are the top brands contributing to share gain/loss for KOF in Cuernavaca in2022'</li></ul>                                                     |
| 2     | <ul><li>"What is the trend of Danone's market share in Colas SS in Cuernavaca from 2019 to YTD 2023?"</li><li>'Are there any notable shifts in market share for KOF from 2021 to 2022 in TT OP'</li><li>'In which categories KOF has gained most share in TT OP Cuernavaca 2021-2022'</li></ul>                                                                                                     |
| 3     | <ul><li>'What is the avg pack size for an offering within the 12.1-15 price bracket for Agua in TT HM, for top KOF brand vs Top competitor brand?'</li><li>'How should KOF gain share in <10 price bracket for NCB in TT HM'</li><li>'What is the price range for CSD in TT HM?'</li></ul>                                                                                                          |
| 5     | <ul><li>'What are the untapped opportunities  in Graffon?'</li><li>'Help me with new categories to expand in for kof'</li><li>'I am a category manager for agua at kof. Tell me what areas to prioritize for category development'</li></ul>                                                                                                                                                        |
| 8     | <ul><li>'Which month and at what price was my share highest'</li><li>'What is the sku range and velocity of KOF in colas'</li><li>'distribution wise, which non csd skus are doing the best?'</li></ul>                                                                                                                                                                                             |
| 11    | <ul><li>'Which levers to prioritize to gain share in Orizaba Colas MS_PET_RET?'</li><li>'Which levers to prioritize to gain share in CSDS?'</li><li>'How can I gain share in NCBS?'</li></ul>                                                                                                                                                                                                       |
| 9     | <ul><li>'How much headroom do I have in AGUA'</li><li>'What measures can be taken to maximize headroom in the AGUA market?'</li><li>'Which industries to prioritize to gain share in CSDS in TT HM?'</li></ul>                                                                                                                                                                                      |
| 10    | <ul><li>'Which pack segment shows opportunities to drive my market share in CSDs Colas MS?'</li><li>'What are my priority pack segments to gain share in AGUA Colas SS?'</li><li>'What are my priority pack segments to gain share in NCB Colas SS?'</li></ul>                                                                                                                                      |
| 1     | <ul><li>'Which levers have led the share loss of KOF in Colas in Q4'</li><li>'Why is Resto losing share in Cuernavaca Colas SS RET Original?'</li><li>'What are the main factors contributing to the share gain of Jumex in Still Drinks MS in Orizaba for FY 2022?'</li></ul>                                                                                                                      |
| 7     | <ul><li>'Is there any PPL correction scope for Valle Frut within TT OP?'</li><li>'Is there a need for PPL correction in the energy drink offerings of Red Bull within the Energy Drinks category?'</li><li>'Is CC a premium brand? How premium are its offerings as compared to other brands in Colas?'</li></ul>                                                                                   |
| 4     | <ul><li>'What is the industry mix of CSDS'</li><li>'How has the csd industry evolved in the last two years?'</li><li>'What is the change in industry mix for coca-cola in TT HM Orizaba in 2021 to 2022'</li></ul>                                                                                                                                                                                  |
| 6     | <ul><li>"I'm interested in launching a new orange flavored offering in new york city in the (TT OP) category. What pack sizes would be most suitable for this market?"</li><li>'I want to launch a new pack type in csd for kof. Tell me what'</li><li>'Within Colas MS, which pack segments are dominated by Red cola in Cuernavaca? Do we have any offerings to compete with the same?'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.25     |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("vgarg/fw_identification_model_e5_large_v5_14_12_23")
# Run inference
preds = model("Why is KOF losing share in Cuernavaca Colas MS RET Original?")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 5   | 13.8362 | 33  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 10                    |
| 1     | 10                    |
| 2     | 10                    |
| 3     | 10                    |
| 4     | 10                    |
| 5     | 10                    |
| 6     | 10                    |
| 7     | 10                    |
| 8     | 10                    |
| 9     | 10                    |
| 10    | 10                    |
| 11    | 6                     |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0034 | 1    | 0.3504        | -               |
| 0.1724 | 50   | 0.1647        | -               |
| 0.3448 | 100  | 0.0301        | -               |
| 0.5172 | 150  | 0.0113        | -               |
| 0.6897 | 200  | 0.0026        | -               |
| 0.8621 | 250  | 0.0012        | -               |
| 1.0345 | 300  | 0.0006        | -               |
| 1.2069 | 350  | 0.001         | -               |
| 1.3793 | 400  | 0.0007        | -               |
| 1.5517 | 450  | 0.0004        | -               |
| 1.7241 | 500  | 0.0006        | -               |
| 1.8966 | 550  | 0.0005        | -               |
| 2.0690 | 600  | 0.0005        | -               |
| 2.2414 | 650  | 0.0004        | -               |
| 2.4138 | 700  | 0.0003        | -               |
| 2.5862 | 750  | 0.0005        | -               |
| 2.7586 | 800  | 0.0004        | -               |
| 2.9310 | 850  | 0.0003        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu118
- Datasets: 2.15.0
- Tokenizers: 0.15.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->