Update README.md
Browse files
README.md
CHANGED
@@ -96,6 +96,7 @@ import os
|
|
96 |
from PIL import Image
|
97 |
|
98 |
# Path to your dataset CSV and image folder
|
|
|
99 |
dataset_csv_path = 'sample_dataset.csv'
|
100 |
image_folder_path = 'sampled_images'
|
101 |
|
@@ -224,7 +225,7 @@ def generate_prediction(sample):
|
|
224 |
samples = prepare_samples_from_dataframe(df, image_folder_path)
|
225 |
|
226 |
# Limit to a subset if desired
|
227 |
-
samples_to_infer = samples[:
|
228 |
|
229 |
# Run inference and collect results
|
230 |
results = []
|
@@ -232,26 +233,29 @@ results = []
|
|
232 |
for sample in samples_to_infer:
|
233 |
assistant_reply = generate_prediction(sample)
|
234 |
predicted_label = extract_classification(assistant_reply)
|
235 |
-
|
|
|
|
|
236 |
# Collect results
|
237 |
result = {
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
}
|
243 |
results.append(result)
|
244 |
|
245 |
# Display the results
|
246 |
print(f"Sample ID: {sample['unique_id']}")
|
|
|
247 |
print("Assistant's Reply:")
|
248 |
print(assistant_reply)
|
249 |
-
print(f"Predicted Label: {predicted_label}")
|
250 |
print("-" * 50)
|
251 |
|
252 |
results_df = pd.DataFrame(results)
|
253 |
# Save to CSV if desired
|
254 |
-
results_df.to_csv('inference_results.csv', index=False)
|
255 |
```
|
256 |
### Example Output
|
257 |
|
|
|
96 |
from PIL import Image
|
97 |
|
98 |
# Path to your dataset CSV and image folder
|
99 |
+
# get our sample from here https://huggingface.co/vector-institute/Llama3.2-Multimodal-Newsmedia-Bias-Detector/tree/main/sampled-data
|
100 |
dataset_csv_path = 'sample_dataset.csv'
|
101 |
image_folder_path = 'sampled_images'
|
102 |
|
|
|
225 |
samples = prepare_samples_from_dataframe(df, image_folder_path)
|
226 |
|
227 |
# Limit to a subset if desired
|
228 |
+
samples_to_infer = samples[:900] # For example, take the first 5 samples
|
229 |
|
230 |
# Run inference and collect results
|
231 |
results = []
|
|
|
233 |
for sample in samples_to_infer:
|
234 |
assistant_reply = generate_prediction(sample)
|
235 |
predicted_label = extract_classification(assistant_reply)
|
236 |
+
# Get the first_paragraph from the original DataFrame
|
237 |
+
original_row = df[df['unique_id'] == sample['unique_id']].iloc[0]
|
238 |
+
first_paragraph = original_row['first_paragraph']
|
239 |
# Collect results
|
240 |
result = {
|
241 |
+
'unique_id': sample['unique_id'],
|
242 |
+
'first_paragraph': first_paragraph, # Add this line
|
243 |
+
'assistant_reply': assistant_reply,
|
244 |
+
'predicted_label': predicted_label,
|
245 |
}
|
246 |
results.append(result)
|
247 |
|
248 |
# Display the results
|
249 |
print(f"Sample ID: {sample['unique_id']}")
|
250 |
+
print(f"text: {first_paragraph}")
|
251 |
print("Assistant's Reply:")
|
252 |
print(assistant_reply)
|
253 |
+
#print(f"Predicted Label: {predicted_label}")
|
254 |
print("-" * 50)
|
255 |
|
256 |
results_df = pd.DataFrame(results)
|
257 |
# Save to CSV if desired
|
258 |
+
results_df.to_csv('llama-vision-ift-inference_results.csv', index=False)
|
259 |
```
|
260 |
### Example Output
|
261 |
|