File size: 7,557 Bytes
c69ef85 30fadb3 6c84751 30fadb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
---
language:
- ta
- ml
- te
tags:
- multimodal
- hate-speech-detection
- text-classification
- audio-classification
- deep-learning
- tamil
- malayalam
- telugu
license: cc-by-nc-4.0
datasets:
- dravidian-hate-speech
model-index:
- name: Multimodal Hate Speech Detection in Dravidian Languages
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Dravidian Hate Speech Dataset
type: dravidian-hate-speech
metrics:
- type: macro-f1
value: 0.6438
- task:
type: audio-classification
name: Audio Classification
dataset:
name: Dravidian Hate Speech Dataset
type: dravidian-hate-speech
metrics:
- type: macro-f1
value: 0.88
---
# Multimodal Classification Model (Tamil, Malayalam, Telugu)
This repository contains deep learning models for **text and audio classification** in three languages: **Tamil, Malayalam, and Telugu**.
---
## 📌 Overview
The models accept **text and audio inputs** and classify them into predefined categories. Each language has dedicated trained models and label encoders:
- **Text Model:** Utilizes `xlm-roberta-large` for feature extraction with a deep learning classifier.
- **Audio Model:** Uses **MFCC feature extraction** and a CNN-based classifier.
---
## 🛠 1. Setup
### 1.1 Clone the Repository
```bash
git clone https://huggingface.co/vasantharan/Multimodal_Hate_Speech_Detection_in_Dravidian_languages
cd Multimodal_Hate_Speech_Detection_in_Dravidian_languages
```
### 1.2 Install Dependencies
Ensure Python is installed, then run:
```bash
pip install -r requirements.txt
```
---
## 📂 2. Directory Structure
```
├── audio_label_encoders/ # Label encoders for audio models
├── audio_models/ # Trained audio classification models
├── text_label_encoders/ # Label encoders for text models
└── text_models/ # Trained text classification models
```
Each folder contains three files, corresponding to **Tamil, Malayalam, and Telugu**.
---
## 🚀 3. How to Use
### 3.1 Load the Models
```python
import tensorflow as tf
import pickle
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModel
# Load Label Encoders
with open("text_label_encoders/tamil_label_encoder.pkl", "rb") as f:
tamil_text_label_encoder = pickle.load(f)
with open("audio_label_encoders/tamil_audio_label_encoder.pkl", "rb") as f:
tamil_audio_label_encoder = pickle.load(f)
# Load Models
text_model = tf.keras.models.load_model("text_models/tamil_text_model.h5")
audio_model = tf.keras.models.load_model("audio_models/tamil_audio_model.keras")
```
---
## 📝 4. Text Classification
### 4.1 Preprocess Text
```python
from indicnlp.tokenize import indic_tokenize
from indicnlp.normalize.indic_normalize import IndicNormalizerFactory
import advertools as adv
stopwords = list(sorted(adv.stopwords["tamil"]))
def preprocess_tamil_text(text):
tokens = list(indic_tokenize.trivial_tokenize(text, lang="ta"))
tokens = [token for token in tokens if token not in stopwords]
return " ".join(tokens)
```
### 4.2 Extract Features and Predict
```python
def extract_embeddings(model_name, texts):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
model.eval()
embeddings = []
batch_size = 16
with torch.no_grad():
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i + batch_size]
encoded_inputs = tokenizer(batch_texts, padding=True, truncation=True, max_length=128, return_tensors="pt")
outputs = model(**encoded_inputs)
batch_embeddings = outputs.last_hidden_state.mean(dim=1).numpy()
embeddings.extend(batch_embeddings)
return np.array(embeddings)
feature_extractor = "xlm-roberta-large"
text = "உங்கள் உதவி மிகவும் பயனுள்ளதாக இருந்தது"
processed_text = preprocess_tamil_text(text)
text_embeddings = extract_embeddings(feature_extractor, [processed_text])
text_predictions = text_model.predict(text_embeddings)
predicted_label = tamil_text_label_encoder.inverse_transform(np.argmax(text_predictions, axis=1))
print("Predicted Label:", predicted_label[0])
```
---
## 🔊 5. Audio Classification
### 5.1 Preprocess Audio
```python
import librosa
def extract_audio_features(file_path, sr=22050, n_mfcc=40):
audio, _ = librosa.load(file_path, sr=sr)
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=n_mfcc)
return np.mean(mfccs.T, axis=0)
```
### 5.2 Predict Audio Class
```python
def predict_audio(file_path):
features = extract_audio_features(file_path)
reshaped_features = features.reshape((1, 40, 1, 1))
predicted_class = np.argmax(audio_model.predict(reshaped_features), axis=1)
predicted_label = tamil_audio_label_encoder.inverse_transform(predicted_class)
return predicted_label[0]
audio_file = "test_audio.wav"
predicted_audio_label = predict_audio(audio_file)
print("Predicted Audio Label:", predicted_audio_label)
```
---
## 📊 6. Batch Processing for a Dataset
### 6.1 Load Dataset
```python
import os
import pandas as pd
def load_dataset(base_dir='../test', lang='tamil'):
dataset = []
lang_dir = os.path.join(base_dir, lang)
audio_dir = os.path.join(lang_dir, "audio")
text_dir = os.path.join(lang_dir, "text")
text_file = os.path.join(text_dir, [file for file in os.listdir(text_dir) if file.endswith(".xlsx")][0])
text_df = pd.read_excel(text_file)
for file in text_df["File Name"]:
if (file + ".wav") in os.listdir(audio_dir):
audio_path = os.path.join(audio_dir, file + ".wav")
transcript_row = text_df.loc[text_df["File Name"] == file]
transcript = transcript_row.iloc[0]["Transcript"] if not transcript_row.empty else ""
dataset.append({"File Name": audio_path, "Transcript": transcript})
else:
transcript_row = text_df.loc[text_df["File Name"] == file]
transcript = transcript_row.iloc[0]["Transcript"] if not transcript_row.empty else ""
dataset.append({"File Name": "Nil", "Transcript": transcript})
return pd.DataFrame(dataset)
dataset_df = load_dataset()
```
### 6.2 Predict Text and Audio in Bulk
```python
dataset_df["Transcript"] = dataset_df["Transcript"].apply(preprocess_tamil_text)
text_embeddings = extract_embeddings(feature_extractor, dataset_df["Transcript"].tolist())
text_predictions = text_model.predict(text_embeddings)
text_labels = tamil_text_label_encoder.inverse_transform(np.argmax(text_predictions, axis=1))
dataset_df["Predicted Text Label"] = text_labels
dataset_df["Predicted Audio Label"] = dataset_df["File Name"].apply(lambda x: predict_audio(x) if x != "Nil" else "No Audio")
dataset_df.to_csv("predictions.tsv", sep="\t", index=False)
```
---
## ☁️ 7. Deployment on Hugging Face
```bash
pip install huggingface_hub
huggingface-cli login
```
```python
from huggingface_hub import upload_file
upload_file(path_or_fileobj="text_models/tamil_text_model.h5", path_in_repo="text_models/tamil_text_model.h5", repo_id="<your-hf-repo>")
```
---
## 📬 Contact
For issues or improvements, feel free to raise an issue or email [**[email protected]**](mailto\:[email protected]).
---
**License:** CC BY-NC 4.0
|