varcoder commited on
Commit
6358cc3
·
1 Parent(s): 2bcc132

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: segformer-b0-DeepCrack
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # segformer-b0-DeepCrack
14
+
15
+ This model is a fine-tuned version of [nvidia/mit-b4](https://huggingface.co/nvidia/mit-b4) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0145
18
+ - Mean Iou: 0.0585
19
+ - Mean Accuracy: 0.1170
20
+ - Overall Accuracy: 0.1170
21
+ - Accuracy Background: nan
22
+ - Accuracy Cracked: 0.1170
23
+ - Iou Background: 0.0
24
+ - Iou Cracked: 0.1170
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 6e-05
44
+ - train_batch_size: 2
45
+ - eval_batch_size: 2
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 1
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Cracked | Iou Background | Iou Cracked |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
55
+ | 0.3566 | 0.13 | 20 | 0.2932 | 0.0200 | 0.0401 | 0.0401 | nan | 0.0401 | 0.0 | 0.0401 |
56
+ | 0.1639 | 0.27 | 40 | 0.1326 | 0.1353 | 0.2706 | 0.2706 | nan | 0.2706 | 0.0 | 0.2706 |
57
+ | 0.0562 | 0.4 | 60 | 0.0548 | 0.0681 | 0.1363 | 0.1363 | nan | 0.1363 | 0.0 | 0.1363 |
58
+ | 0.0283 | 0.53 | 80 | 0.0294 | 0.0815 | 0.1630 | 0.1630 | nan | 0.1630 | 0.0 | 0.1630 |
59
+ | 0.0187 | 0.67 | 100 | 0.0194 | 0.0720 | 0.1439 | 0.1439 | nan | 0.1439 | 0.0 | 0.1439 |
60
+ | 0.0144 | 0.8 | 120 | 0.0160 | 0.0656 | 0.1313 | 0.1313 | nan | 0.1313 | 0.0 | 0.1313 |
61
+ | 0.0152 | 0.93 | 140 | 0.0145 | 0.0585 | 0.1170 | 0.1170 | nan | 0.1170 | 0.0 | 0.1170 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.30.2
67
+ - Pytorch 2.0.1+cu118
68
+ - Datasets 2.13.1
69
+ - Tokenizers 0.13.3