File size: 1,771 Bytes
d4cf5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1b33c
d4cf5b3
3f1b33c
 
 
 
 
 
 
 
d4cf5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1b33c
d4cf5b3
 
 
3f1b33c
 
 
d4cf5b3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: other
tags:
- generated_from_trainer
model-index:
- name: segformer-b0-DeepCrack
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-DeepCrack

This model is a fine-tuned version of [nvidia/mit-b4](https://huggingface.co/nvidia/mit-b4) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4264
- Mean Iou: 0.1964
- Mean Accuracy: 0.3929
- Overall Accuracy: 0.3929
- Accuracy Background: nan
- Accuracy Cracked: 0.3929
- Iou Background: 0.0
- Iou Cracked: 0.3929

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Cracked | Iou Background | Iou Cracked |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
| 0.5096        | 1.0   | 20   | 0.4264          | 0.1964   | 0.3929        | 0.3929           | nan                 | 0.3929           | 0.0            | 0.3929      |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3