valgardg
commited on
Commit
·
261524f
1
Parent(s):
c5305e2
updated demo code in readme
Browse files
README.md
CHANGED
@@ -77,36 +77,68 @@ https://github.com/valgardg/learnice
|
|
77 |
## Usage
|
78 |
## Pos Tagging an Icelandic Sentence
|
79 |
Here is an example of how to use the model to tag Icelandic sentences:
|
80 |
-
|
81 |
-
|
82 |
-
import
|
|
|
83 |
import json
|
84 |
|
85 |
-
# Load
|
86 |
-
|
87 |
-
tokenizer = AutoTokenizer.from_pretrained("<local_model_path>")
|
88 |
-
|
89 |
-
# Load the ID-to-Tag mapping
|
90 |
-
with open("id2tag_ftbi_ds100.json", "r") as f:
|
91 |
id2tag = json.load(f)
|
92 |
|
93 |
-
#
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
## License
|
112 |
MIT License
|
|
|
77 |
## Usage
|
78 |
## Pos Tagging an Icelandic Sentence
|
79 |
Here is an example of how to use the model to tag Icelandic sentences:
|
80 |
+
```
|
81 |
+
# Load the fine-tuned model
|
82 |
+
from transformers import BertTokenizerFast, BertForTokenClassification
|
83 |
+
import torch # type: ignore
|
84 |
import json
|
85 |
|
86 |
+
# Load id2tag mapping
|
87 |
+
with open("../models/ftbi_ds100/id2tag_ftbi_ds100.json", "r") as f:
|
|
|
|
|
|
|
|
|
88 |
id2tag = json.load(f)
|
89 |
|
90 |
+
# Load your tokenizer and model from saved checkpoint
|
91 |
+
tokenizer = BertTokenizerFast.from_pretrained("../models/ftbi_ds100")
|
92 |
+
model = BertForTokenClassification.from_pretrained("../models/ftbi_ds100")
|
93 |
+
|
94 |
+
# Function to predict tags on a new sentence
|
95 |
+
def predict_tags(sentence, tokenizer, model, id2tag):
|
96 |
+
# Tokenize the sentence
|
97 |
+
tokenized_input = tokenizer(sentence, is_split_into_words=True, return_tensors="pt")
|
98 |
+
|
99 |
+
# Get predictions
|
100 |
+
with torch.no_grad():
|
101 |
+
output = model(**tokenized_input)
|
102 |
+
|
103 |
+
# Get predicted label IDs
|
104 |
+
label_ids = torch.argmax(output.logits, dim=2).squeeze().tolist()
|
105 |
+
|
106 |
+
# Convert label IDs to tag names
|
107 |
+
tags = [id2tag[str(label_id)] if str(label_id) in id2tag else 'O' for label_id in label_ids]
|
108 |
+
|
109 |
+
# Match back to original words
|
110 |
+
word_ids = tokenized_input.word_ids() # This shows which original word each token corresponds to
|
111 |
+
word_tags = []
|
112 |
+
current_word_id = None
|
113 |
+
current_tags = []
|
114 |
+
|
115 |
+
# Aggregate tags for each word
|
116 |
+
for word_id, tag in zip(word_ids, tags):
|
117 |
+
if word_id is None: # Skip special tokens
|
118 |
+
continue
|
119 |
+
if word_id != current_word_id: # New word detected
|
120 |
+
if current_tags: # Append the aggregated tag for the previous word
|
121 |
+
word_tags.append(current_tags[0]) # Use the first tag, or customize this
|
122 |
+
current_word_id = word_id
|
123 |
+
current_tags = [tag]
|
124 |
+
else:
|
125 |
+
current_tags.append(tag) # Aggregate tags for the same word
|
126 |
+
|
127 |
+
# Append the last word's tag
|
128 |
+
if current_tags:
|
129 |
+
word_tags.append(current_tags[0]) # Use the first tag, or customize this
|
130 |
+
|
131 |
+
# Return the original words and their aggregated tags
|
132 |
+
return list(zip(sentence, word_tags))
|
133 |
+
|
134 |
+
# Example usage with a new Icelandic sentence
|
135 |
+
sentence = ["Hraunbær", "105", "."]
|
136 |
+
sentence = ["Niðurstaða", "þess", "var", "neikvæð", "."]
|
137 |
+
sentence = "Kl. 9-16 fótaaðgerðir og hárgreiðsla , Kl. 9.15 handavinna , Kl. 13.30 sungið við flygilinn , Kl. 14.30-16 dansað við lagaval Halldóru , kaffiveitingar allir velkomnir .".split()
|
138 |
+
predicted_tags = predict_tags(sentence, tokenizer, model, id2tag)
|
139 |
+
|
140 |
+
print("Predicted Tags:", predicted_tags)
|
141 |
+
```
|
142 |
|
143 |
## License
|
144 |
MIT License
|